

Package management tools

 In any distribution, the packages are the basic item for handling the tasks of installing new software, updating existing software or eliminating unused software.

 Important

 Basically, a package is a set of files that form an application or the combination of several related applications, normally forming a single file (known as a package), with its own format, normally compressed, which is distributed via CD/DVD or downloading service (ftp or http repositories).

 The use of packages is helpful for adding or removing software, because it considers it as a unit instead of having to work with the individual files.

 In the distribution's content (its CD/DVDs) the packages tend to be grouped into categories such as: a) base: essential packages for the system's functioning (tools, start-up programs, system libraries); b) system: administration tools, utility commands; c) development: programming tools: editors, compilers, debuggers... d) graphics: graphics controllers and interfaces, desktops, windows managers... e) other categories.

 Normally, to install a package we will need to follow a series of steps:

 1) Preliminary steps (pre-installation): check that the required software exists (and with the correct versions) for its functioning (dependencies), whether system libraries or other applications used by the software.

 2) Decompress the package content, copying the files to their definitive locations, whether absolute (with a fixed position) or can be relocated to other directories.

 3) Post-installation: retouching the necessary files, configuring possible software parameters, adjusting it to the system...

 Depending on the types of packages, these steps may be mostly automatic (this is the case in RPM [Bai03] and DEB [Deb02]) or they may all be needed to be done by hand (.tgz case) depending on the tools provided by the distribution.

 Next, let's see perhaps the three most classical packages of most distributions. Each distribution has one as standard and supports one of the others.

 TGZ package

 TGZ packages are perhaps those that have been used for longest. The first GNU/Linux distributions used them for installing the software, and several distributions still use it (for example, Slackware) and some commercial UNIX. They are a combination of files joined by the tar command in a single .tar file that has then been compressed using the gzip utility, and that tends to appear with the .tgz or .tar.gz extension. At the same time, nowadays it is common to find tar.bz2 which instead of gzip use another utility called bzip2, which in some cases obtains greater file compression.

 Example 3.8. Note

 TGZ packages are a basic tool when it comes to installing unorganised software. Besides, they are a useful tool for backup processes and restoring files.

 Contrary to what it may seem, it is a commonly used format especially by the creators or distributors of software external to the distribution. Many software creators that work for various platforms, such as various commercial UNIX and different distributions of GNU/Linux prefer it as a simpler and more portable system.

 An example of this case is the GNU project, which distributes its software in this format (in the form of source code), since it can be used in any UNIX, whether a proprietary system, a BSD variant or a GNU/Linux distribution.

 If in binary format, we will have to bear in mind that it is suitable for our system, for example a denomination such as the following one is common (in this case, version 1.4 of the Mozilla web navigator):

 mozilla-i686-pc-linux-gnu-1.4-installer.tar.gz

 where we have the package name, as Mozilla, designed for i686 architecture (Pentium II or above or compatible), it could be i386, i586, i686, k6 (amd k6), k7 (amd athlon), amd64 u x86_64 (for AMD64 and some 64bit intels with em64t), o ia64 (intel Itaniums) others for the architectures of other machines such as sparc, powerpc, mips, hppa, alpha... then it tells us that it is for Linux, on a PC machine, software version 1.4.

 If it were in source format, it could appear as:

 mozilla-source-1.4.tar.gz

 where we are shown the word source; in this case it does not mention the machine's architecture version, this tells us that it is ready for compiling on different architectures.

 Otherwise, there would be different codes for every operating system or source: GNU/Linux, Solaris, Irix, bsd...

 The basic process with these packages consists of:

 1)	Decompressing the package (they do not tend to use absolute path, meaning that they can be decompressed anywhere):

 	tar -zxvf file.tar.gz (or .tgz file)

 With the tar command we use z options: decompress, x: extract files, v: view process, f: name the file to be treated.

 It can also be done separately (without the tar's z):

 	gunzip file.tar.gz

 (leaves us with a tar file)

 	tar -xvf file.tar

 2)	Once we have decompressed the tgz, we will have the files it contained, normally the software should include some file of the readme or install type, which specifies the installation options step by step, and also possible software dependencies.

 In the first place, we should check the dependencies to see if we have the right software, and if not, look for it and install it.

 If it is a binary package, the installation is usually quite easy, since it will be either directly executable from wherever we have left it or it will carry its own installer. Another possibility is that we may have to do it manually, meaning that it will be enough to copy it (cp -r, recursive copy) or to move it (mv command) to the desired position.

 Another case is the source code format. Then, before installing the software we will first have to do a compilation. For this we will need to read the instruction that the program carries in some detail. But most developers use a GNU system called autoconf (from autoconfiguration), which normally uses the following steps (if no errors appear):

 • ./configure: it is a script that configures the code so that it can be compiled on our machine and that verifies that the right tools exist. The --prefix = directory option makes it possible to specify where the software will be installed.

 • make: compilation itself.

 • make install: installing the software in the right place, normally previously specified as an option to configure or assumed by default.

 This is a general process, but it depends on the software whether it follows it or not, there are fairly worse cases where the entire process needs to be carried out by hand, retouching configuration files or the makefile, and/or compiling the files one by one, but luckily this is becoming less and less common.

 In the case of wanting to delete all of the installed software, we will have to use the uninstaller if provided or, otherwise, directly delete the directory or installed files, looking out for potential dependencies.

 The tgz packages are fairly common as a backup mechanism for administration tasks, for example, for saving copies of important data, making backups of user accounts or saving old copies of data that we do not know if we will need again. The following process tends to be used: let's suppose that we want to save a copy of the directory "dir", we can type: tar -cvf dir.tar dir (c: compact dir in the file dir.tar) gzip dir.tar (compress) or in a single instruction like:

 tar -cvzf dir.tgz dir

 The result will be a dir.tgz file. We need to be careful if we are interested in conserving the file attributes and user permissions, as well as possibly links that may exist (we must examine the tar options so that it adjusts to the required backup options).

 Fedora/Red Hat: RPM packages

 Important

 The RPM packages system [Bai03] created by Red Hat represents a step forward, since it includes the management of software configuration tasks and dependencies. Also, the system stores a small database with the already installed packages, which can be consulted and updated with new installations.

 Conventionally, RPM packages use a name such as:

 package-version-rev.arq.rpm

 where package is the name of the software, version is the numbering of the software version, rev normally indicates the revision of the RPM package, which indicates the number of times it has been built and arq refers to the architecture that it is designed for, whether Intel/AMD (i386, i586, i686, x86_64, em64t, ia64) or others such as alpha, sparc, PPC... The noarch "architecture" is normally used when it is independent, for example, a Set of scripts and src in the case of dealing with source code packages. A typical execution will include running rpm, the options of the operation to be performed, together with one or more names of packages to be processed together.

 Example 3.9. Note

 The package: apache-1.3.19-23.i686.rpm would indicate that it is Apache software (the web server), in its version 1.3.19, package revision RPM 23, for Pentium II architectures or above.

 Typical operations with RPM packages include:

	

 Package information: specific information about the package is consulted using the option -q together with the package name (with -p if on an rpm file). If the package has not yet been installed, the option would be -q accompanied by the information option to be requested, and if the request is to be made to all the installed packages at the same time, the option would be -qa. For example, requests from an installed package:

 	

 Request

 	

 RPM options

 	

 Results

	
 Files

 	

 rpm -ql

 	
 List of the files it contains

	
 Information

 	

 rpm -qi

 	
 Package description

	
 Requirements

 	

 rpm -qR

 	
 Prior requirements, libraries or software

	

 Installation: simply rpm -i package.rpm, or with the URL where the package can be found, for downloading from FTP or web servers, we just need to use the syntax ftp:// or http:// to obtain the package's location.

 The installation can be completed on condition that the package dependencies are met, whether in the form of prior software or the libraries that should be installed. In the case of not fulfilling this requirement, we will be told what software is missing, and the name of the package that provides it. We can force the installation (although the installed software may not work) with the options --force or --nodeps
 , or simply by ignoring the information on the dependencies.

 The task of installing a package (done by rpm) entails various sub-tasks: a) checking for potential dependencies; b) examining for conflicts with other previously installed packages; c) performing pre-installation tasks; c) deciding what to do with the configuration files associated to the package if they existed previously; d) unpackaging the files and placing them in the right place; e) performing other post-installation tasks; finally, f) storing the log of tasks done in the RPM database.

	

 Updating: equivalent to the installation but first checking that the software already exists rpm -U package.rpm. It will take care of deleting the previous installation.

	

 Verification: during the system's normal functioning many of the installed files will change. In this regard, RPM allows us to check files in order to detect any changes from a normal process or from a potential error that could indicate corrupt data. Through rpm -V package we verify a specific package and through rpm -Va we will verify all of them.

	

 Deletion: erasing the package from the RPM system (-e or --erase); if there are dependencies, we may need to eliminate others previously.

 Example 3.10. Example

 For a remote case:

 rpm -i ftp://site/directory/package.rpm

 would allow us to download the package from the provided FTP or web site, with its directory location, and proceed in this case to install the package.

 We need to control where the packages come from and only use known and reliable package sources, such as the distribution's own manufacturer or trustworthy sites. Normally, together with the packages, we are offered a digital signature for them, so that we can check their authenticity. The sums md5 are normally used for checking that the package has not been altered and other systems, such as GPG (GNU version of PGP), for checking the authenticity of the package issuer. Similarly, we can find different RPM package stores on Internet, where they are available for different distributions that use or allow the RPM format.

 Example 3.11. Note

 View the site: www.rpmfind.net.

 For a secure use of the packages, official and some third party repositories currently sign the packages electronically, for example, using the abovementioned GPG; this helps us to make sure (if we have the signatures) that the packages come from a reliable source. Normally, every provider (the repository) will include some PGP signature files with the key for its site. From official repositories they are normally already installed, if they come from third parties we will need to obtain the key file and include it in RPM, typically:

 $ rpm –import GPG-KEY-FILE

 With GPP-KEY-FILE being the GPG key file or URL of the file, normally this file will also have sum md5 to check its integrity. And we can find the keys in the system with:

 $ rpm -qa | grep ^gpg-pubkey

 we can observe more details on the basis of the obtained key:

 $ rpm -qi gpg-key-xxxxx-yyyyy

 For a specific RPM package we will be able to check whether it has a signature and with which one it has been used:

 $ rpm –checksig -v <package>.rpm

 And to check that a package is correct based on the available signatures, we can use:

 $ rpm -K <package.rpm>

 We need to be careful to import just the keys from the sites that we trust. When RPM finds packages with a signature that we do not have on our system or when the package is not signed, it will tell us and, then, we will have to decide on what we do.

 Regarding RPM support in the distributions, in Fedora (Red Hat and also in its derivatives), RPM is the default package format and the one used extensively by the distribution for updates and software installation. Debian uses the format called DEB (as we will see), there is support for RPM (the rpm command exists), but only for consulting or package information. If it is essential to install an rpm package in Debian, we advise using the alien utility, which can convert package formats, in this case from RPM to DEB, and proceed to install with the converted package.

 In addition to the distribution's basic packaging system, nowadays each one tends to support an intermediate higher level software management system, which adds an upper layer to the basic system, helping with software management tasks, and adding a number of utilities to improve control of the process.

 In the case of Fedora (Red Hat and derivatives) it uses the YUM system, which allows as a higher level tool to install and manage packages in rpm systems, as well as automatic management of dependencies between packages. It allows access to various different repositories, centralises their configuration in a file (/etc/yum.conf normally), and has a simple commands interface.

 Example 3.12. Note

 YUM in: http://yum.baseurl.org

 The yum configuration is based on:

 	/etc/yum.config	(options file)
	/etc/yum	(directory for some associated utilities)
	/etc/yum.repos.d	(directory for specifying repositories, a file for each one, including access information and location of the gpg signatures).

 A summary of the typical yum operations would be:

 	
 Order

 	
 Description

	
 yum install <name>

 	
 Install the package with the name

	
 yum update <name>

 	
 Update an existing package

	
 yum remove <name>

 	
 Eliminate package

	
 yum list <name>

 	
 Search package by name (name only)

	
 yum search <name>

 	
 More extensive search

	
 yum provices <file>

 	
 Search for packages that provide the file

	
 yum update

 	
 Update the entire system

	
 yum upgrade

 	
 As above, including additional packages

 Finally, Fedora also offers a couple of graphics utilities for YUM, pup for controlling recently available updates, and pirutas a software management package. There are also others like yumex, with greater control of yum's internal configuration.

 Debian: DEB packages

 Debian has interactive tools such as tasksel, which makes it possible to select sub-sets of packages grouped into types of tasks: packages for X, for development, for documentation etc., or such as dselect, which allows us to navigate the entire list of available packages (there are thousands) and select those we wish to install or uninstall. In fact, these are only a front-end of the APT mid-level software manager.

 At the command line level it has dpkg, which is the lowest level command (would be the equivalent to rpm), for managing the DEB software packages directly [Deb02], typically dpkg -i package.deb to perform the installation. All sorts of tasks related to information, installation, removal or making internal changes to the software packages can be performed.

 The intermediary level (as in the case of Yum in Fedora) is presented by the APT tools (most are apt-xxx commands). APT allows us to manage the packages from a list of current and available packages based on various software sources, whether the installation's own CDs, FTP or web (HTTP) sites. This management is conducted transparently, in such a way that the system is independent from the software sources.

 The APT system is configured from the files available in /etc/apt, where /etc/apt/sources.list is the list of available sources; an example could be:

 deb http://http.us.debian.org/debian stable main contrib non-free
debsrc http://http.us.debian.org/debian stable main contrib non-free
deb http://security.debian.org stable/updates main contrib non-free

 Where various of the "official" sources for a Debian are compiled (etch in this case, which is assumed to be stable), from which we can obtain the software packages in addition to their available updates. Basically, we specify the type of source (web/FTP in this case), the site, the version of the distribution (stable in this example) and categories of software to be searched for (free, third party contributions, non-free or commercial licenses).

 The software packages are available for the different versions of the Debian distribution, there are packages for the stable, testing, and unstable versions. The use of one or the others determines the type of distribution (after changing the repository sources in sources.list). It is possible to have mixed package sources, but it is not advisable, because conflicts could arise between the versions of the different distributions.

 Example 3.13. Note

 Debian's DEB packages are perhaps the most powerful installation system existing in GNU/Linux. A significant benefit is the system's independence from the sources of the packages (through APT).

 Once we have configured the software sources, the main tool for handling them in our system is apt-get, which allows us to install, update or remove from the individual package, until the entire distribution is updated. There is also a front-end to apt-get, called aptitude, whose options interface is practically identical (in fact it could be described as an apt-get emulator, since the interface is equivalent); as benefits it manages package dependencies better and allows an interactive interface. In fact it is hoped that aptitude will become the default interface in the command line for package management in Debian.

 Some basic functions of apt-get:

	
 Installation of a particular package:

 		apt-get install package

	
 Removing a package:

 		apt-get remove package

	
 Updating the list of available packages:

 		apt-get update

	
 Updating the distribution, we could carry out the combined steps:

 		apt-get update
		apt-get upgrade
		apt-get dist-upgrade

 Through this last process, we can keep our distribution permanently updated, updating installed packages and verifying dependencies with the new ones. Some useful tools for building this list are apt-spy, which tries to search for the fastest official sites, or netselect, which allows us to test a list of sites. On a separate note, we can search the official sites (we can configure these with apt-setup) or copy an available source file. Additional (third party) software may need to add more other sources (to etc/sources.list); lists of available source sites can be obtained (for example: http://www.apt-get.org).

 Updating a system in particular generates a download of a large number of packages (especially in unstable), which makes it advisable to empty the cache, the local repository, with the downloaded packages (they are kept in /var/cache/apt/archive) that will no longer be used, either with apt-get clean to eliminate them all or with apt-get autoclean to eliminate the packages that are not required because there are already new versions and, in principle, they will no longer be needed. We need to consider whether we may need these packages again for the purposes of reinstalling them, since, if so, we will have to download them again.

 The APT system also allows what is known as SecureAPT, which is the secure management of packages through verifying sums (md5) and the signatures of package sources (of the GPG type). If the signatures are not available during the download, apt-get reports this and generates a list of unsigned packages, asking whether they will stop being installed or not, leaving the decision to the administrator. The list of current reliable sources is obtained using:

 # apt-key list

 The GPG keys of the official Debian sites are distributed through a package, and we can install them as follows:

 # apt-get install debian-archive-keyring

 Obviously, considering that we have the sources.list with the official sites. It is hoped that by default (depending on the version of Debian) these keys will already be installed when the system initiates. For other unofficial sites that do not provide the key in a package, but that we consider trustworthy, we can import their key, obtaining it from the repository (we will have to consult where the key is available, there is no defined standard, although it is usually on the repository's home page). Using apt-key add with the file, to add the key or also:

 # gpg –import file.key
gpg –export –armor XXXXXXXX | apt-key add -

 With X being a hexadecimal related to the key (see repository instructions for the recommended way of importing the key and the necessary data).

 Another important functionality of the APT system is for consulting package information, using the apt-cache tool, which allows us to interact with the lists of Debian software packages.

 Example 3.14. Example

 The apt-cache tool has commands that allow us to search for information about the packages, for example:

	
 Search packages based on an incomplete name:

 		apt-cache search name

	
 Show package description:

 	apt-cache show package

	
 What packages it depends on:

 	apt-cache depends package

 Other interesting apt tools or functionalities:

 - apt-show-versions: tells us what packages may be updated (and for what versions, see option -u).

 Other more specific tasks will need to be done with the lowest level tool, such as dpkg. For example, obtaining the list of files of a specific installed package:

 dpkg -L package

 The full list of packages with

 dpkg -l

 Or searching for what package an element comes from (file for example):

 dpkg -S file

 This functions for installed packages; apt-file can also search for packages that are not yet installed.

 Finally, some graphic tools for APT, such as synaptic, gnome-apt for gnome, and kpackage or adept for KDE are also worth mentioning, as well as the already mentioned text ones such as aptitude or dselect.

 Conclusion: we should highlight that the APT management system (in combination with the dpkg base) is very flexible and powerful when it comes to managing updates and is the package management system used by Debian and its derived distributions such as Ubuntu, Kubuntu, Knoppix, Linex etc.

activities

 1) Suppose that we locate a website in our machine, using Apache for example. Our site is designed for ten internal users, but we do not control this number. Subsequently, we consider making this system accessible on the Internet, as we think that it could be useful for the clients, and the only thing we have to do is assign a public IP address on the Internet to the system. What types of attack might this system suffer?

 2) How can we detect the files with suid in our system? Which commands are necessary? And the directories with SUID or SGID? Why is it necessary, for example, for /usr/bin/passwd to have a SUID bit?

 3) The .rhosts files, as we have seen, are a significant danger for security. Could we use some type of automatic method for regularly checking these files? How?

 4) Let us suppose that we want to disable a service that we know has its /etc/init.d/service script that controls it: we wish to disable it in all the runlevels in which it appears. How do we find the runlevels in which it is present? (for example, searching for links to the script).

 5) Examine the active services in your machine. Are they all necessary? How would we protect or deactivate them?

 6) Practice using some of the described security tools (nmap, nessus etc.).

 7) Which IPtables rules would be necessary for a machine that we only wish to access through SSH from a specific address?

 8) What if we only want to access the web server?

Security tools

 Important

 Some of these tools can also be considered tools for attacking other machines. Therefore, it is advisable to test these tools on machines in our own local or private network; we should never do this with third party IPs, as these could interpret the tests as intrusions and we or our ISP may be held responsible for them and the corresponding authorities may be notified to investigate us and remove our access.

 We will now briefly discuss some tools and the ways in which they can be used:

 a)	TripWire: this tool maintains a database of sums for checking the important files in the system.

 It may serve as a preventive IDS system. We can use it to "take" a snapshot of the system, so that we can subsequently check any modification made and that it has not been corrupted by an attacker. The aim here is to protect the files in the machine itself and to avoid any changes occurring, such as those that, for example, the rootkit might have caused. Therefore, when we execute the tool again, we can check all the changes compared to the previous execution. We have to choose a subset of files that are important in the system or possible sources of attack. TripWire is proprietary, but there is a free open-source tool that is the equivalent called AIDE.

 b) Nmap [Insb]: this is a tool that scans ports in large networks. It can scan from individual machines to network segments. It provides various scanning modes, depending on the system's protections. It also provides techniques with which we can determine the operating system used by remote machines. Different TCP and UDP packets may be used to test the connections. There is a graphical interface known as xnmap.

 [image: Security tools]

 c)	Wireshark [Wir] (previously called Ethereal): is a protocol analyser that captures the traffic in the network (it acts as a sniffer). It can be used to visualise the captured traffic, see the statistics and data of the individual packets and group the packets, either by origin, destination, ports or protocol. It can even reconstruct the traffic from a whole session from a Transmission Control Protocol (TCP).

 d)	Snort [Sno]: is an IDS system that makes it possible to analyse the traffic in real time and save logs of the messages. It can be used to analyse the protocols and search by patterns (protocol, origin, destination etc.). It can be used to detect various types of attack. Basically, it analyses the traffic in the network to detect patterns that might correspond to an attack. The system uses a series of rules to either produce a log of the situation (log) or warn the user (alert) or reject the information (drop).

 e)	Nessus [Nes]: detects any known vulnerabilities (by testing different intrusion techniques) and assesses the best security options for those discovered. It is a modular program that includes a series of plugins (more than 11,000) for performing the different analyses. It uses a client-server architecture, with a graphic client to show the results and the server, which carries out different tests on the machines. It has the capacity to examine whole networks. It generates reports on the results, which can be exported to different formats (HTML, for example). Up until 2005, Nessus 2 was a free tool, but the company decided to make it proprietary, in version Nessus 3. In GNU/Linux, Nessus 2 is still used, as it continues to have a GPL license and a series of plugins, which are gradually updated. Nessus 3, as a proprietary tool for GNU/Linux, is more powerful and widely used, as it is one of the most popular security tools and there is normally a free version available with plugins that are less updated than the ones in the version that is not free.

 [image: Security tools]

 We can find many other security tools that are available. A good place to start is http://sectools.org, where the designers of Nmap maintain a list of popular tools, as voted by the users (now, a bit older list, but useful tools).

Chapter 7. Server administration

 Remo Suppi Boldrito

 GNUFDL

2009-09-01

 preface

 The interconnection between machines and high-speed communications has meant that the resources that are used can be at a different geographical location to that of the user. UNIX (and of course GNU/Linux) is probably the best example of this philosophy, because from its beginning, the focus has always been on the sharing of resources and the independence of the 'devices'. This philosophy has been realized in the creation of something that has now become very common: the services. A service is a resource (which may or not be universal) that makes it possible to obtain information, share data or simply process information remotely, under certain conditions. Our objective is to analyse the services that make it possible for our network. Generally, within a network, there will be a machine (or various machines, depending on the configuration) that will make it possible to exchange information with all the other elements. These machines are called servers and they contain a set of programs that centralise the information and make it easily accessible. These services help to reduce costs and increase the availability of information, but it should be remembered that a centralised service also involves some disadvantages, as it can come offline and leave the users without the service.

 Important

 The servers should be designed so that all the servers are mirrored to solve these situations.

 The services can be classified into two categories: those linking computers to computers or those linking users to computers. In the first case, the services are those needed by other computers, whereas in the second, the services are those required by the users (although there are services that may fall into both categories). In the first category, there are the naming services, such as the domain name system (DNS), the user information service (NISYP), the LDAP information directory or the services for storing in proxies. In the second category, we have interactive connection and remote execution services (SSH, telnet), file transfer (FTP), user-level information exchange such as email (MTA, IMAP, POP), news, World Wide Web, Wiki and files (NFS). To demonstrate all the possibilities of GNU/Linux Debian-FC6, we will describe each of these services with a minimal and operative configuration, but without leaving out the aspects related to security and stability.

OpenMosix

 OpenMosix [Prod] is a software package that transforms a set of machines connected by a network under GNU/Linux in a cluster. This balances the workload automatically between the different nodes of the cluster and the nodes can be joined or the cluster left without interrupting the service. The load is distributed between the nodes, taking into account the speed of the connection and the CPU. OpenMosix is part of the kernel (through a Linux Kernel Patch) and maintains total compatibility with GNU/Linux, the user programs, files and resources. Another characteristic of OpenMosix is that it incorporates a powerful and optimised file system (oMFS) for HPC (high performance computing) applications. In Debian Woody, we can install OpenMosix from openmosix-dev (libraries and headers), kernel-pacth- openmosix (OpenMosix patch), openmosix (administration tools). Likewise, it is possible to install mosix (see the documentation for the difference, especially with regard to the licenses, between Mosix and OpenMosix). In Debian versions subsequent to Woody, it is not included as a package (stable) and it will be necessary to go to http://openmosix.sourceforge.net/ to obtain the packages (or resources) and the installation guides (http://howto.x-tend.be/openMosix-HOWTO/).

 OpenMosix uses a configuration file that is generally found in en /etc (see documentation for older versions of this file), which is called openmosix.map and which should be in each node. Its format is very simple and each line has three fields: Nodo_ID IP-Address(or hostname) Range-size

 An example would be:

	1 node1 1
	2 node2 1
	3 node3 1
	4 192.168.1.1 1
	5 192.168.1.2 1

 It is also possible to use a range where the ID and the IP increase respectively. We have to ensure that we have the same configuration and the same version of OpenMosix in each node. To execute OpenMosix, in each node we must type:

 setpe -w -f /etc/openmosix.map

 We can also use the OpenMosix script (copying it from userspace-tools to /etc/init.d) to start it up during boot.

 The oMFS file system permits remote access to all the files in the cluster, as though they were locally mounted. The file systems (FS) of the other nodes can be mounted on /mfs and, therefore, the files in /home on node 3 will be seen on each machine in /mfs/3/home.

 Important

 All the UIDs (User IDs) and GIDs (Group IDs) of the FS on each node of the cluster must be equal (OpenLdap could be used for this).

 To mount the oMFS, we must modify /etc/fstab with an entry such as: mfs_mnt /mfs mfs dfsa = 1 0 0 and to enable or disable it: mfs_mnt /mfs mfs dfsa = 0 0 0.

 Afterward, the FS of each node will be seen in mfs/[openMosixNode ID]/. Once installed, it will be possible to execute a very simple script various times, such as, for example (see Howto of OpenMosix):

 awk 'BEGIN {for(i = 0;i<10000;i++)for(j = 0;j<10000;j++);}'

 And, subsequently, we can observe the behaviour with mosmom or with openmosixview (recommended). OpenMosix has a daemon (omdiscd), which makes it possible to automatically configure the cluster eliminating the need to edit and configure /etc/openmosix.map. This daemon uses multicast to indicate the other nodes that it is also an OpenMosix node, which means that, once omdiscd has booted, this daemon will join the cluster automatically. For this to happen, we need to have the default routing (GW) of the network properly configured. Once it has executed (omdiscd), a series of messages indicating the status of the cluster and the configuration will be generated. We can use the showmap command to see the new configuration generated by omdiscd. OpenMosix provides a set of tools that the administrator can use to configure and tune the OpenMosix cluster. These tasks can be performed with tools in the space of a user (migrate, mon, mosctl, mosrun) or through the /proc/hpc interface. It is important to remember that up to OpenMosix version 2.4.16, the interface was called /proc/mosix and that, since version 2.4.17, it has been called /proc/hpc.

 We will now present a summary of the configuration tools that are executed in the space of a user; for /proc/hpc consult the references:

	

 migrate [PID] [OpenMosix ID]: sends a migration request to a process.

	

 mon: is a monitor with a text interface that shows information on the cluster through a bar diagram.

	

 mosctl: is the configuration tool of OpenMosix. Using the options (stay, lstay, block, quiet, mfs, expel, bring, get- tune, getyard, getdecay) we can indicate whether processes can migrate or not, the use of MFS, obtain information on the load, balance on the load etc.

	

 mosrun [h | OpenMosix ID | list of OpenMosix IDs] command [arguments]: executes a command on a determined node.

GNU/Linux advanced administration

 Remo Suppi Boldrito

 Edited by
Josep Jorba Esteve

 GNUFDL

2009-09-01

	Revision History

 		2010-12-15+01:00	UOC
	XML to docbook Conversion

Acknowledgements

 The authors would like to thank the Foundation of the Universitat Oberta de Catalunya (http://www.uoc.edu) for funding the first edition of this work and its subsequent revisions, as part of the International Master course in Free Software offered at the UOC.

Remote connection services: telnet and ssh

 Telnet and telnetd

 Telnet is a (client) command used to communicate interactively with another host that executes the daemon telnetd. The telnet command may be executed as telnet host or interactively as telnet, which will enter the "telnet>" prompt, and then, for example: open host. Once communication has been established, we must enter the user and the password with which we wish to connect to the remote system. There are various commands (in the interactive mode), such as open, logout, mode (defines the visualisation characteristics), close, encrypt, quit, set, unset, or you may execute external commands with '!'. You may use the /etc/telnetrc file for default definitions or .telnetrc the definitions of a particular user (these must be in the user's home directory).

 The telnetd daemon is the telnet protocol server for the interactive connection. Telned is generally started up by the inetd daemon and it is recommended that a tcpd wrapper (which uses the access rules in host.allow and host.deny) be included in the telnetd call within the /etc/inetd.conf file (for example), include a line such as:

 telnet stream tcp nowait telnetd.telenetd /usr/sbin/tcpd /usr/bin/in.telnetd)

 To increase the system's security, please see the unit on security. In some distributions (Debian 3.0 or higher), inetd's functions can be replaced by xinetd, which means that the /etc/xinetd.conf file must be configured (see the unit on the network administration). Likewise, if you wish to start up inetd in test mode, you can use the sentence /etc/init.d/inetd.real start. If the /etc/uissue.net file is present, telnetd will show its contents when logging in. It is also possible to use /etc/security/access.conf to enable/disable user logins, host logins or user group logins, as they connect.

 Important

 It should be remembered that, although the telnet-telnetd pair may function in encrypt mode in the latest versions (transfer of encrypted data, although they must be compiled with the corresponding option), it is an absolete command (deprecated), mainly due to the lack of security, although it can still be used in secure networks or in controlled situations.

 If it has not been installed, we can use (Debian) apt-get install telnetd and then verify that it has been registered either in /etc/inetd.conf or in /etc/xinetd.conf (or in the directory in the files are defined, for example, /etc/xinetd.d as indicated in the previous file with the sentence includes /etc/xinetd.d). xinetd.conf or /etc/xinetd.d/telnetd should include a section such as (any modification in xinetd.conf must reboot the service with service xinetd restart):

	service telnet
	{
	disable = no
	flags = REUSE
	socket_type = stream
	wait = nouser = root
	server = /usr/sbin/in.telnetd
	log_on_failure += USERID
	}

 Instead of using telnetd, we recommend using SSL telnet(d) which replaces telnet(d) using encryption and authentication through SSL or using SSH (next section). SSLTelnet(d) may work with telnet(d) normally in both directions, as, when beginning communication, it verifies whether the other peer supports SSL and if not, it continues with the normal telnet protocol. The advantages compared to telnet(d) are that the passwords and data do not pass through the network in the plain text mode and anyone using, for example, tcpdump will be able to see the contents of the communication. Also, SSLtelnet may be used to connect, for example, to a secure web server (for example https://servidor.web.org) by simply executing: telnet server.web.org 443.

 Secure shell or SSH

 An advisable change is to use ssh instead of telnet, rlogin or rsh. These latter commands are insecure (except for SSLTelnet) for various reasons: the most important is that all that is transmitted through the network, including the user names and passwords, is in plain text (although there are encrypted versions of telnet-telnetd, they must coincide in that both of them are encrypted), anyone that has access to that network or any segment of that network will be able to obtain all that information and then assume the identity of the user. The second is that these ports (telnet, rsh,...) are the first place at which a cracker will try to connect. The ssh protocol (in version OpenSSH) provides an encrypted and compressed connection that is much more secure than, for example, telnet (it is advisable to use version 2 of the protocol). All current distributions incorporate the ssh client and the sshd server by default.

 ssh

 To execute the command, proceed as follows:

 ssh -l login name host o ssh user@hostname

 Through SSH we can encapsulate other connections such as X11 or any other TCP/IP. If we omit the parameter -l, the user will connect to the same local user and in both cases the server will ask for the password to authenticate the user's identity. SSH supports different authentication modes (see ssh man pages) based on the RSA algorithm and the public password.

 It is possible to create the user identification passwords using the command ssh-keygen -t rsa|dsa. The command creates in the user .shh directory the file id_rsa and id_rsa.pub, the private and public key respectively (for exemple, for RSA encryption algorithm). The user could copy the public key (id_rsa.pub) on the remote machine in the .ssh directory of the remote user, in the authorized_keys file. This file will be able to contain as many public keys as sites from which a remote connection to the machine will be wanted. The syntax is of one key per line and is equivalent to the .rhosts file (although the lines will have a considerable size). After entering the public keys of the user-machine into this file, this user will be able to connect from that machine without needing a password.

 In normal mode (without creating the keys), the user will be prompted for a password, but the communication will always be encrypted and will never be accessible to other users who could be listening in on the network. For further information, see man ssh. In order to execute a command remotely, simply:

 ssh -l login name host_remote_command

 For example:

 ssh -l user localhost ls -al

 sshd

 The sshd is the server (daemon) for ssh (if not installed, it can be installed using apt-get install ssh which will install the server and the client). In combination, they replace rlogin, telnet, and rsh and provide secure and encrypted communication between two insecure hosts in the network.

 This will generally start up with the initialization files (/etc/init.d or /etc/rc) and wait for connections from clients. The sshd of most current distributions supports versions 1 and 2 of the SSH protocol. When the package is installed, it creates a specific RSA key of the host, and when the daemon boots, it creates another, the RSA for the session, which is not stored on disk and changes every hour. When a client initiates communication, the client generates a random number of 256 bits which is encrypted together with the two keys of the server and sent. This number will be used during the communication as the session key to encrypt the communication using a standard encryption algorithm. The user may select any of the available ones offered by the server. There are some (more secure) differences when using version 2 of the protocol. Then, some of the user authentication methods described in the client are initiated or it will ask for the password, but always with the communication encrypted. For further information, see the sshd man pages.

 Tunnel over SSH

 Often we have access to an sshd server, but for security reasons not to other non-encrypted services (for example a POP3 mail service or X11 windows server) or simply we wish to connect to a service that can only be accessed from the company environment. To do so, it is possible to establish an encrypted tunnel between the client machine (for example with Windows, running a free software ssh client called putty) and the server with sshd. In this case, when we connect the tunnel to the service, the service will see the request as if it were coming from the same machine. For example, if we want to establish a POP3 connection on port 110 of the remote machine (which also has an sshd server) we will execute:

 ssh -C -L 1100:localhost:110 user-id@host

 This command will ask for the password of the user-id over the host and, once connected, the tunnel will have been created. Every package sent to the local machine over port 1100 will be sent to the remote machine localhost over port 110, which is where the POP3 service listens (option -C compresses the traffic through the tunnel).

 Making tunnels over other ports is very easy. For example, let's suppose that we only have access to a remote proxy server from a remote machine (remote login) – not from the local machine –, we can make a tunnel to connect the navigator through the tunnel in the local machine. Let's suppose that we have a login on a gateway machine, which can access the machine called proxy that runs the Squid proxy server over port 3128. We run:

 ssh -C -L 8080:proxy:3128 user@gateway

 Once we have connected we will have the tunnel listening over local port 8080, which will redirect traffic from the gateway to the proxy to 3128. To navigate securely, all we will need to do is http://localhost:8080/

Types and methods of attack

 Computer security in administration terms can be understood as the process that allows the system's administrator to prevent and detect unauthorised use of the system. Preventive measures help to prevent attempts by unauthorised users (known as intruders) to access any part of the system. Detection helps to discover when these attempts where made or, if they are effective, to establish barriers so that intrusions are not repeated and so that the system can be recovered if breached.

 Intruders (known also colloquially as hackers, crackers, 'attackers' or 'pirates') normally wish to obtain control over the system, whether to cause its malfunctioning, to corrupt the system or its data, to make use of the machine's resources or simply to use it to launch attacks on other systems, thus helping them to protect their own identity and hide the real source of the attacks. It is also possible that they wish to examine (or steal) the system's information, straightforward espionage of the system's actions or to cause physical damage to the machine, by formatting the disk, changing data, deleting or modifying critical software etc.

 With regard to intruders, we need to establish some differences that are not very clear in colloquial terms. Normally, we refer to a hacker [Him01], as a person with detailed knowledge of computing, more or less passionate about programming and security issues and that normally, for no malevolent purpose uses their knowledge to protect themselves or third parties by entering networks to detect security failures and, in some cases, to test their abilities.

 An example would be the GNU/Linux community, which owes a lot to its hackers, since the term hacker has to be understood as an expert in certain issues (rather than an intruder on security).

 At the same time, we have crackers. This is where the term is used more or less negatively, towards those who use their knowledge in order to corrupt (or destroy) systems, whether for their own fame, for financial reasons, with the intention of causing damage or simply inconvenience; for reasons of technological espionage, acts of cyber-terrorism etc. Likewise, we talk of hacking or cracking, when we refer to techniques for studying, detecting and protecting security, or, on the contrary, techniques designed to cause damage by breaching systems' security.

 Unfortunately, obtaining access to a system (whether it is unprotected or partially safe) is much easier than it would seem. Intruders constantly discover new vulnerabilities (sometimes know as 'holes' or exploits), that allow them to enter different layers of software. The ever-increasing complexity of software (and hardware) makes it more and more difficult to test the security of computer systems in a reasonable manner. The common use of GNU/Linux on networks, whether via the Internet or private networks with TCP/IP technology such as intranets, makes us expose our systems, as victims, to security attacks. [Bur02][Fen02][Line]

 The first thing we have to do is to break the myth of computer security: it simply does not exist. What we can achieve is a certain level of security that makes us feel safe within certain parameters. But as such, it is merely a perception of security and, like all perceptions, can be false so that we may only become aware at the last minute once our systems have already been affected. The logical conclusion is that computer security requires an important effort in terms of consistency, realism and learning on a practically daily basis.

 We need to be capable of establishing security policies for our systems that allow us to prevent, identify and react against potential attacks. And to be aware that the feeling of security that we may have, is precisely no more than that: a feeling. Therefore, we must not neglect any implemented policies and we need to keep them up to date, as well as our knowledge of the issue.

 Possible attacks are a constant threat to our systems and can compromise their functioning, as well as the data that we handle; We will always have to define a certain policy of security requirements for our systems and data. The threats we may suffer could affect the following aspects:

 Example 9.2. Note

 Threats affect confidentiality, or the integrity or accessibility of our systems.

	

 Confidentiality: the information must only be accessible to authorised persons; we are answering the question: who will be able to access it?

	

 Integrity: the information must only be modified by authorised persons: what can be done with it?

	

 Accessibility: the information must be available for those who need it when they need it, on condition that they are authorised: how and when can it be accessed?

 Let's move on to a certain (non-exhaustive) classification of the usual types of attacks that we can suffer:

	

 Authentication: attacks that falsify the identity of the participant so that access is obtained to programs or services that were initially out of bounds.

	

 Interception (or tapping): mechanism whereby data is intercepted by third parties to whom the data was not directed.

	

 Falsification (or replacement): replacement of some participants – whether machines, software or data – by other false ones.

	

 Theft of resources: unauthorised use of our resources.

	
 Or, simply, vandalism: after all, the presence of mechanisms that allow interference with the correct functioning of the system or services to cause partial inconvenience or the shutdown or cancellation of resources is fairly common.

 The methods and precise techniques employed can vary enormously (moreover, innovations arise everyday), obliging us, as administrators to be in constant contact with the field of security to know what we may have to face on a daily basis.

 For each of these types attacks, normally one or more methods of attack may be used, which in turn can provoke one or more types of attack.

 With regards to where an attack occurs, we need to be clear what can be done or what the objective of the methods will be:

 Example 9.3. Note

 Attacks may have the purpose of destroying, disabling or spying our components, whether hardware, software or communication systems.

	

 Hardware: in this respect, the threat is directly on accessibility, what will someone who has acces to the hardware be able to do? In this case, we will normally need "physical" measures, such as security controls for access to the premises where the machines are located in order to prevent problems of theft or damage to the equipment designed to erase their service. Confidentiality and integrity may also be compromised if physical acess to the machines allows some of their devices, such as disk drives, to be used, or if it allows booting of the machines or access to user accounts that may be open.

	

 Software: if accessibility is compromised during an attack, programs may be deleted or disabled, denying access. In the case of confidentiality, it can give rise to unauthorised copies of the software. In the case of integrity, the default functioning of the program could be altered, so that it fails in certain situations or so that it performs tasks in the interest of the attacker, or may simply compromise the integrity of program data: making them public, altering them or simply stealing them.

	

 Data: whether structured, such as in database services, or version management (such as cvs) or simple files. Attacks that threaten accessibility can destroy or eliminate them, thus denying access to them. In the case of confidentiality, we could be allowing unauthorised reading and the integrity would be affected when modifications are made or new data is created.

	

 Communication channel (on the network, for example): for the methods that affect accessibility, it can cause the destruction or elimination of messages and prevent access to the network. In confidentiality, reading and observation of the traffic of messages to or from the machine. And with regards to integrity, any modification, delay, reordering, duplication or falsification of the incoming and/or outgoing messages.

 Techniques used in the attacks

 The methods used are various and can depend on an element (hardware or software) or the version of the element. Therefore, we need to maintain the software updated for security corrections that arise and to follow the instructions of the manufacturer or distributor in order to protect the element.

 Despite this, there are normally always "fashionable" techniques or methods at any particular time. Some brief notes on today's attack techniques are:

 Example 9.4. Note

 The methods used by attackers are extremely varied and evolve constantly in terms of the technological details that they use.

	

 Bug exploits: or exploitation of errors or exploits [CERb] [Ins][San], whether of a hardware, software, service, protocol or of the operating system itself (for example, in the kernel), and normally in a specific version of these. Normally, any computer element is more or less prone to errors in its design, or simply to things that have not been foreseen or taken into account. Periodically, holes are discovered (sometimes known as exploits, or simply bugs), which may be taken advantage of for breaching system security. Normally either generic attack techniques are used, such as the one explained as follows, or particular techniques for the affected element. Every affected element will have someone responsible – whether the manufacturer, developer, distributor or the GNU/Linux community – for producing new versions or patches to handle these problems. As administrators, we are responsible for being informed and maintaining a responsible policy of updates to avoid potential risks of attack. If there are no solutions available, we can also study the possibility of using alternatives for the element or disabling it until we find a solution.

	

 Virus: program normally annexed to others and that uses mechanisms of autocopy and transmission. It is common to annex viruses to executable programs, electronic mails, or to incorporate them into documents or programs that allow macros (not verified). They are perhaps the greatest security plague of the moment.

 GNU/Linux systems are protected almost completely against these mechanisms for several reasons: in executable programs, they have very limited access to the system, in particular to the user account. With the exception of the root user, where we have to be very careful with what it executes. Mail does not tend to use non-verified macros (contrary to Outlook and Visual Basic Script in Windows, which is an exploit for the entry of viruses), and in the case of the documents, we are in a similar situation, since they do not support non-verified macros or scripting languages (such as Visual Basic for Applications (VBA) in Microsoft Office).

 In any case, we will have to pay attention to what may happen in the future, since specific viruses for GNU/Linux could be created taking advantage of some bugs or exploits. We must also take a look at mail systems, since although we may not generate viruses, we can transmit them; for example, if our system functions as a mail router, messages with a virus could come in and could then be sent on to others. Here we can implement virus detection and filtering policies. Another plague that could enter the category of viruses are spam messages, which although not usually used as attacking elements, can be considered problematic due to the virulence with which they appear, and the financial cost that they can entail (in loss of time and resources).

	

 Worm: normally this is a type of program that takes advantage of a system bug in order to execute code without a permission. They tend to be used to take advantage of the machine's resources, such as the use of the CPU, when it detects that the system is not functioning or is not in use or, with malicious intent, with the objective of stealing resources or to use them to stop or block the system. Transmission and copying techniques are also commonly used.

	

 Trojan horse (or 'Trojans'): useful programs that incorporate some functionality but hide other functionalities, which are the ones used to obtain information from the system or in order to compromise it. A particular case could be the one of the mobile type codes of web applications such as Java, JavaScript or ActiveX; these normally ask for consent to be executed (ActiveX in Windows), or have limited models of what they can do (Java, JavaScript). But like all software, they also have bugs and are an ideal method for transmitting Trojans.

	

 Back door (or trap door): method for accessing a hidden program that could be used to give access to the system or processed data without our knowledge. Other effects could be changing the system's configuration, or allowing viruses to be introduced. The mechanism employed could come included in some type of common software or in a Trojan.

	

 Logic bombs: program embedded in another program which checks when specific conditions occur (temporary, user actions etc.) to activate itself and perform unauthorised activities.

	

 Keyloggers: special program dedicated to hijacking the interactions with the user's keyboard and/or mouse. They may be individual programs or Trojans incorporated into other programs.

 Normally, they would need to be introduced in an open system to which there was access (although more and more frequently they can come incorporated in Trojans that are installed). The idea is to capture any introduction of keys, in such a way as to capture passwords (for example, for bank accounts), interaction with applications, visited websites, completed forms etc.

	

 Scanner (port scanning): rather than an attack, it represents a prior step consisting of gathering potential targets. Basically, it consists of using tools that allow the network to be examined in order to find machines with open ports, whether TCP, UDP or other protocols, which indicate the presence of certain services. For example, scanning machines looking for port 80 TCP, indicates the presence of web servers, from which we can obtain information about the server and the version used in order to take advantage of its known vulnerabilities.

	

 Sniffers: allows to capture packages circulating on a network. With the right tools we can analyse machines' behaviours: which are servers, clients, what protocols are used, and in many case obtaining passwords for insecure services. Initially, they were used a lot for capturing passwords of telnet, rsh, rcp, ftp... insecure services that should not be used (use the secure versions instead: ssh, scp, sftp). Sniffers (and scanners) are not necessarily an attack tool, since they can also serve for analysing our networks and detecting failures, or simply for analysing our own traffic. Normally, the techniques of both scanners and sniffers tend to be used by an intruder looking for the system's vulnerabilities whether to learn the data of an unknown system (scanners), or to analyse its internal interaction (sniffer).

	

 Hijacking: these are techniques that try to place a machine in such a way that it intercepts or reproduces the functioning of a service in another machine from which it has intercepted the communication. They tend to be common in cases of electronic mail, file or web transfers. For example, in the web case, a session may be captured and it will be possible to reproduce what the user is doing, pages visited, interaction with forms etc.

	

 Buffer overflows: fairly complex technique that takes advantage of the programming errors in the applications. The basic idea is to take advantage of overflows in application buffers, whether queues, arrays etc. If the limits are not controlled, an attacking program can generate a bigger message or data than expected and cause failures. For example, many C applications with poorly written buffers, in arrays, if we surpass the limit we can cause the program's code to be overwritten causing a malfunctioning or breakdown of the service or machine. Moreover, a more complex variant allows parts of program to be incorporated in the attack (C compiled or shell scripts), that may allow the execution of any code that the attacker wishes to introduce.

	

 Denial of Service ('DoS attack'): this type of attack causes the machine to crash or overloads one or more services, rendering them unusable. Another technique is DDoS (Distributed DoS), which is based on using a set of distributed machines in order to produce the attack or service overload. This type of attack tends to be solved with software updates, since normally all of the services that were not designed for a specific workload are affected and saturation is not controlled. DoS and DDoS attacks are commonly used in attacks on websites or DNS servers, which are affected by server vulnerabilities, for example, specific versions of Apache or BIND. Another aspect that is worth taking into account is that our system could also be used for DDoS type attacks, through control from a backdoor or a Trojan.

 A fairly simple example of this attack (DoS) is known as the SYN flood, which tries to generate TCP packages that open a connection, but then do nothing else with it, simply leaving it open; this spends system resources on data structures of the kernel, and network connection resources. If this attack is repeated hundreds or thousands of times, all of the resources can become occupied without being used, in such a way that when users wish to make use of the service, it is denied because the resources are occupied. Another case is known as mail bombing, or simply resending (normally with a false sender) until mail accounts are saturated, causing the mail system to crash or to become so slow that it is unusable. To some extent these attacks are fairly simple to carry out with the right tools and have no easy solution, since they take advantage of the internal functioning of protocols and services; in these cases we need to take measures of detection and subsequent control.

 Example 9.5. Web sites

 SYN flood, see: http://www.cert.org/advisories/CA-1996-21.html

 Problems associated to e-mail bombing amb spamming: http://www.cert.org/tech tips/email_ bombing_spamming.html

	

 Spoofing: the techniques of spoofing encompass various methods (normally, very complex) of falsifying both information or the participants in a transmission (origin and/or destination). Some spoofing examples include:

 	
 IP spoofing, falsification of a machine, allowing false traffic to be generated or intercepting traffic that was directed to another machine. In combination with other attacks, it can even breach firewall protection.

	
 ARP spoofing, complex technique (uses a DDoS), which tries to falsify source addresses and network recipients by means of attacking the machines' ARP caches, in such a way that the real addresses are replaced by others in various points of a network. This technique can breach all type of protections, including firewalls, but is not a simple technique.

	
 E-mail is perhaps the simplest. It consists of generating false emails, in terms of both content and source address. For this type, techniques of the type known as social engineering are fairly common; these basically trick the user in a reasonable manner, a classical example are false emails from the system administrator or, for example, from the bank where we have our current account, stating that there have been problems with the accounts and that we have to send confidential information or the previous password in order to solve them, or asking the password to be changed for a specific one. Surprisingly, this technique (also known as phising) manages to deceive a considerable number of users. Even with (social engineering of) simple methods: a famous cracker commented that his preferred method was by telephone. As an example, we describe the case of a certification company (Verisign), for which the crackers obtained the Microsoft private software signature by just making a call on behalf of a company that said a problem had arisen and that they needed their key again. In summary, high levels of computer security can be overcome by a simple telephone call or by an email badly interpreted by a user.

 Example 9.6. Web site

 See the case of Microsoft in: http://www.computerworld.com/softwaretopics/os/windows/story/ 0,10801,59099,00.html

	

 SQL injection: it is a technique aimed at databases and web servers in particular, which generally takes advantage of the incorrect programming of web forms, where the information provided has not been correctly controlled. It does not determine that the input information is of the correct type (strongly typified in relation to what is expected) or the type or literal characters that are introduced are not controlled. The technique takes advantage of the fact that the literals obtained by the forms (for example web, although the attacks can be sustained from any API that allows access to a database, for example php or perl) are used directly for making consultations (in SQL), which will attack a specific database (to which in principle there is no direct access). Normally, if there are vulnerabilities and poor form control, SQL code can be injected into the form, in such a way that it can make SQL consultations which provide the searched information. In drastic cases, security information could be obtained (database users and passwords), or even entire database tables, or else loss of information or intentional deletion of data. This technique in web environments in particular can be serious, due to the laws on the protection of the privacy of personal data which an attack of this nature can threaten. In this case, rather than an issue of system security, we are dealing with a problem of programming and control with strong typing of the data expected by the application, in addition to the appropriate control of knowledge of vulnerabilities present in the used software (database, web server, API like php, perl...).

	

 Cross-side scripting (or XSS): another problem associated to web environments and, in particular, to alterations of html code and/or scripts that a user can obtain by visualising a particular website, which can be altered dynamically. Generally errors when it comes to validating HTML code are taken advantage of (all navigators have problems with this, due to the definition of HTML itself, which allows reading of practically any HTML code however incorrect it is). In some cases, the use of vulnerabilities can be direct through scripts in the web page, but normally the navigators have good control of these. At the same time, indirectly there are techniques that allow script code to be inserted, either through access to the user's cookies from the navigator, or by altering the process of redirecting from one web page to another. There are also techniques using frames, that can redirect the HTML code that is being viewed or directly hang the browser. In particular, web sites' search engines can be vulnerable, for allowing script code to be executed. In general, they are attacks with complex techniques, but designed to capture information such as cookies, which can be used for sessions, and thus allow a determined person to be substituted by redirecting websites or obtaining their information. Once more from the system's perspective, it is a question of the software in use. We need to control and know about vulnerabilities detected in navigators (and make the most of the resources that they offer in order to avoid these techniques) and control the use of software (search engines used, versions of the web server, and APIs used in developments).

 Some basic general recommendations for security, could be:

	
 Controlling a problematic factor: users. One of the factors that can most affect security is the confidentiality of passwords, which is affected by users' behaviour; this facilitates actions within the system itself on the part of potential attackers. Most attacks tend to come from within the system, in other words, once the attacker has obtained access to the system.

	
 Users include those who are forgetful (or indiscreet) and forget their password on a frequent basis, mention it in conversation, write it down on a piece of paper left somewhere or stuck next to the desk or computer, or that simply lend it to other users or acquaintances. Another type of user uses predictable passwords, whether the same as their user id, national identity number, name of girlfriend, mother, dog etc., which with a minimum amount of information can be easily discovered. Another case is normal users with a certain amount of knowledge, who have valid passwords but we should always bear in mind that there are mechanisms capable of discovering them (cracking of passwords, sniffing, spoofing...). We need to establish a "culture" of security among users and, through the use of techniques, oblige them to change their passwords, without using typical words, for long passwords (of more than 2 or 3 characters) etc. Lately, many companies and institutions are implementing the technique of making a user sign a contract obliging the user not to disclose the password or to commit acts of vandalism or attacks from their accounts (although of course this does not prevent others from doing so through the user).

	
 Not to use or run programs with no guarantee of origin. Normally, distributors use signature verification mechanisms in order to verify that software packages are what they say, like for example md5 sums (command md5sum) or the use of GPG signatures [Hatd] (gpg command). The seller or distributor provides an md5 sum of their file (or CD image) and we can check its authenticity. Lately, signatures for both individual packages and for package repositories are used in distributions as a mechanism to ensure the supplier's reliability.

	
 Not to use privileged users (like the root user) for the normal working of the machine; any program (or application) would have the permissions to access anywhere.

	
 Not to access remotely with privileged users' privileges or to run programs that could have privileges. Especially if we do not know or have not checked the system's security levels.

	
 Not to use elements when we do not know how they behave or to try to discover how they behave through repeated executions.

 These measures may not be very productive but if we have not protected the system, we have no control over what can happen and, even so, nobody can guarantee that a malicious program cannot sneak in and breach security if we execute it with the right permissions. In other words, in general we need to be very careful with all type of activities related to access and the execution of more or less privileged tasks.

 Countermeasures

 With regard to the measures that can be taken against the types of attacks that occur, we can find some preventive measures and some measures for detecting what is happening to our systems.

 Let's look at some of the types of measures that we could take in the sphere of intrusion prevention and detection (useful tools are mentioned, some of which we will examine later):

	

 Password cracking: in attacks of brute force designed to crack passwords, it is common to try and obtain access through repeated logins; if entry is obtained, the user's security has been compromised and the door is left open to other types of attacks, such as backdoor attacks or simply the destruction of the user's account. In order to prevent this type of attack, we need to reinforce the passwords policy, asking for a minimum length and regular changes of password. One thing we need to avoid is the use of common words in the passwords: many of these attacks are made using brute force, with a dictionary file (containing words in the user's language, common terms, slang etc.). This type of password will be the first to be broken. It can also be easy to obtain information on the victim, such as name, national identity number or address, and to use this data for testing a password. For all of the above, it is also not recommended to have passwords with national identity numbers, names (own or of relatives etc.), addresses etc. A good choice tends to be a password of between 6 and 8 characters at minimum with alphabetic and numerical contents in addition to a special character.

 Even if the password has been well chosen, it may be unsafe if used for unsafe services. Therefore, it is recommended to reinforce the services using encryption techniques that protect passwords and messages. And, on the other hand, to prevent (or not use) any service that does not support encryption, and consequently that is susceptible of attack using methods, such as sniffers; among these, we could include telnet, FTP, rsh, rlogin services.

	

 Bug exploits: avoid having programs available that are not used, are old or are not updated (because they are obsolete). Apply the latest patches and updates that are available for both applications and the operating system. Test tools that detect vulnerabilities. Keep up to date with vulnerabilities as they are discovered.

 Example 9.7. Web sites

 See patches for the operating system at: http://www.debian.org/security

 http://www.redhat.com//security

 http://fedoraproject.org/wiki/Security

	

 Virus: use antivirus mechanisms or programs, systems for filtering suspicious messages; avoid the execution of macros (which cannot be verified). We should not minimise the potential effects of viruses, every day they are perfected and technically it is possible to make simple viruses that can deactivate networks in a matter of minutes (we just have to look at some of the recent viruses in the world of Windows).

 Example 9.8. Web site

 For vulnerabilities, a good tool is Nessus. To discover new vulnerabilities, see CERT in: http://www.cert.org/advisories/ (old site) and http://www.us-cert.gov/cas/techalerts/index.html.

	

 Worm: control the use of our machines or users outside of normal hours and control incoming and/or outgoing traffic.

	

 Trojan horse (or Trojans): regularly check the integrity of programs using sum or signature mechanisms. Detection of anomalous incoming or outgoing system traffic. Use firewalls to block suspicious traffic. A fairly dangerous version of trojans consist of rootkits (discussed below), which perform more than one function thanks to a varied set of tools. In order to verify integrity, we can use sum mechanisms like md5 or gpg, or tools that automate this process like Tripwire or AIDE.

	

 Backdoor (or trap door): we need to obtain certification that programs do not contain any type of undocumented hidden backdoor from software sellers or suppliers and, of course, only accept software from places that offer guarantees. When the software belongs to third parties or comes from sources that could have modified the original software, many manufacturers (or distributors) will integrate some type of software verification based on sum codes or digital signatures (md5 or gpg type) [Hatd]. Whenever these are available, it is useful to verify them before proceeding to install the software. We can also test the system intensively, before installing it as a production system.

 Another problem consists of software alteration a posteriori. In this case, systems of signatures or sums can also be useful for creating codes over already installed software so as to control that no changes are made to vital software. Or backup copies, which we can make comparisons with in order to detect changes.

	

 Logic bombs: in this case, they tend to be hidden after activations through time or through user actions. We can verify that there are no non-interactive jobs introduced on the system of the crontab or at type and other processes (of the nohup type for example), which are periodically executed, or executed in the background for a long time (w commands, jobs). In any case, we could use preventive measures to prevent non-interactive jobs for users, or only allow them for users that need them.

	

 Keyloggers and rootkits: in this case there would be some intermediary process that would try to capture our pressing of keys and try to store them somewhere. We will have to examine situations where a strange process appears belonging to our user, or to detect if we have any file open with which we are not working directly (for example, lsof could be helpful, see man), or network connections, if we were dealing with a keylogger with external sending. To test a very basic functioning of a simple keylogger, we can see the system script command (see script man). In the other case, the rootkit (which also tends to include a keylogger) is usually a package of several programs with various techniques that allow the attacker, once inside an account, to use various elements such as a keylogger, backdoors, Trojans (replacing system commands) etc. in order to obtain information and entrance doors to the system, often accompanied by programs that clean the logs, in order to eliminate evidence of the intrusion. A particularly dangerous case is that of rootkits, that are used or come in the form of kernel modules, which allows them to act at the level of the kernel. In order to detect them, we will need to control that there is no external traffic travelling to a specific address. A useful tool for verifying rootkits is chrootkit.

	

 Scanner (port scanning): scanners tend to be launched over one or more loop systems for scanning known ports in order to detect those that are left open and what services are functioning (and to obtain information on the versions of the services) that could be susceptible to attacks.

	

 Sniffers: avoid tapping and thus prevent the possibility of interceptions being inserted. One technique is the network's hardware construction, which can be divided into segments so that the traffic can only circulate through the zone that will be used, placing firewalls to join these segments to be able to control incoming and outgoing traffic. Use encryption techniques so that the messages cannot be read and interpreted by someone intercepting the network. For the case of both scanners and sniffers, we can use tools such as Whireshark [Wir] (formerly Ethereal) and Snort to check our network or, for port scanning, Nmap. Sniffers can be detected on the network by searching for machines in promiscuous Ethernet mode (intercepting any circulating package); the network card only usually captures the traffic that goes towards it (or of the broadcast or multicast type).

	

 Hijacking: implement mechanisms for services encryption, requiring authentication, and if possible, regularly renewing authentication. Control incoming or outgoing traffic through the use of firewalls. Monitor the network in order to detect suspicious flows of traffic.

	

 Buffer overflows: they tend to be common as bugs or holes in the system, and tend to be resolved through software updates. In any case, through logs, we can observe strange situations of crashed services that should be functioning. We can also maximise the control of processes and access to resources in order to isolate the problem when it occurs in environments of controlled access, such as the one offered by SELinux (see further on in the module).

	

 Denial of Service ('DoS attack') and others, such as SYN flood, or mail bombing: take measures to block unnecessary traffic on our network (through the use of firewalls for example). With the services where it is possible, we will have to control buffer sizes, the number of clients to be attended, connection timeouts, service capacities etc.

	

 Spoofing: a) IP spoofing, b) ARP spoofing, c) electronic mail. These cases require strong service encryption, control through the use of firewalls, authentication mechanisms based on various aspects (for example, not based on the IP, if it could be compromised), mechanisms can be implemented that control established sessions based on several machine parameters at the same time (operating system, processor, IP, Ethernet address etc.). Also monitor DNS systems, ARP cachés, mail spools etc. in order to detect changes in the information that invalidate preceding ones.

	

 Social engineering: this is not an IT issue really, but we have to make sure that users do not make security worse. Appropriate measures such as increasing information or educating users and technicians about security: controlling which personnel will have access to critical security information and in what conditions they may cede it to others. A company's help and maintenance services can be a critical point: controlling who has security information and how it is used.

	
 In relation to end users, improving the culture of passwords, avoiding leaving them noted down anywhere where third parties can see them or simply disclosing them.

 Example 9.9. Web site

 We can find the chkrootkit tool in: http://www.chkrootkit.org

Domain name system (DNS)

 The function of the DNS service (as we explained in the unit on network administration) is to translate the machine names (legible and easy to remember for users) into IP addresses or vice-versa.

 Example 7.1. Example

 When we ask the IP address of pirulo.remix.com is, the server will respond 192.168.0.1 (this process is known as mapping); likewise, when we request an IP address, the service will respond with the name of the machine (known as reverse mapping).

 Important

 The domain name system (DNS) is a tree architecture that avoids duplicating information and makes any searches easier. For this reason, a single DNS makes no sense unless it is part of the architecture.

 The application that provides this service is called named, it is included in most GNU/Linux distributions (/usr/sbin/named) and it is part of the package called bind (currently version 9.x) coordinated by the ISC (Internet software consortium). The DNS is simply a database, which means that the people that modify it have to be aware of its structure, as, otherwise, the service will be affected. As a precaution, special care must be taken to save copies of the files to avoid any interruption in the service. The package in Debian comes as bind and bind.doc. [LN01, Deb03c, IET03]. The configurations are similar, as they are FC, but you will have to install bind, bind-utils and caching-nameserver which will be managed by the yum for example.

 Cache names server

 Firstly, we will configure a DNS server to resolve requests, which will act as a cache for name queries (resolver, caching only server). In other words, the first time, the appropriate server will be consulted because we are starting with a database that contains no information, but all subsequent times, the cache names server will respond, with the corresponding decrease in response times. To configure the cache names server, we need the /etc/bind/named.conf file (in Debian), which has the following (the original comments within the file, indicated with //, have been respected):

 options {
directory "/var/cache/bind";
 // query-source address * port 53;
 // forwarders {
 // 0.0.0.0;
 //
 };
 auth-nxdomain no; # conform to RFC1035
 };
// prime the server with knowledge of the root servers}
zone "." {
 type hint;
 file "/etc/bind/db.root"; };
 // be authoritative for the localhost forward and reverse zones, and for
 // broadcast zones as per RFC 1912
 }
zone "localhost" {
 type master;
 file "/etc/bind/db.local";
 };
zone "127.in-addr.arpa" {
 type master;
 file "/etc/bind/db.127";
 };
zone "0.in-addr.arpa" {
 type master;
 file "/etc/bind/db.0";
 };
zone "255.in-addr.arpa" {
 type master;
 file "/etc/bind/db.255";
 };
// add entries for other zones below here
}

 The directory sentence indicates where we will find the remaining configuration files (/var/cache/bind in our case). The /etc/bind/db.root file will contain something similar to the following (only the first lines, which are not comments indicated by a ';', are shown, and care must be taken with the dots [.]) at the beginning of some lines –they can be obtained and updated directly from the Internet–):

	...
	; formerly NS.INTERNIC.NET
	;
	. 3600000 IN NS A.ROOT-SERVERS.NET.
	A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
	;
	; formerly NS1.ISI.EDU
	;
	. 3600000 NS B.ROOT-SERVERS.NET.
	B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
	;
	; formerly C.PSI.NET
	;
	. 3600000 NS C.ROOT-SERVERS.NET.
	C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
	;
	...

 This file described the root name servers in the world. These servers change, which means that the file must be updated regularly from the Internet. The following sections are the zones; the localhost and 127.in-addr.arpa zones, that link the files to the etc/bind/db.local and /etc/bind/db.127 directories, refer to the direct and inverse resolution for the local interface. The following zones are for the broadcast zones (see RFC 1912) and the appropriate zones should be added at the end. For example, the db.local file could be (';' means 'comment'):

 ; BIND reverse data file for local loopback interface
$TTL 604800
@ IN SOA ns.remix.bogus. root.remix.bogus. (
 1 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
@ IN NS ns.remix.bogus.
1.0.0 IN PTR localhost.

 We will explain how it is used later. The next step is to put the name server in /etc/resolv.conf:

	search subdomain.your-domain.domain your-domain.domain
	# for example search remix.bogus bogus
	nameserver 127.0.0.1

 Where we will have to replace the subdomain.your-domain.domain with the appropriate values. The search line indicates which domains will be searched for any host that wants to connect (it is possible to replace search with domain, although they behave differently) and the name server specifies the address of the name server (in this case, your actual machine, which is where the naming process will execute). The search behaves as follows: if a client is searching for the machine called pirulo, first, the pirulo.subdomain.your-domain.domain will be searched, then pirulo.your-domain.domain and finally, pirulo. This means that the search will take some time; however, if pirulo will be in subdomain.your-domain.domain, it is not necessary to enter the rest.

 The next step is to start up named and look at the results of the execution. To start up the daemon, we can directly use the /etc/init.d/bind9 start startup script (if the named is already executing, go to /etc/init.d/bind9 reload) or, if not, /usr/sbin/named. If we look at the system log in /var/log/daemon.log, we will see something similar to:

	Sep 1 20:42:28 remolix named[165]: starting BIND 9.2.1 \\
	Sep 1 20:42:28 remolix named[165]: using 1 CPU \\
	Sep 1 20:42:28 remolix named[167]: loading configuration from '/etc/bind/named.conf'

 The server's startup and the error messages will appear here (if there were any errors, in which case they must be corrected and the process started again). We can now verify the configuration with commands such as nslookup (original and easy but obsolete according to the programmers), host or dig (recommended). The output of dig -x 127.0.0.1 will be something like:

	#dig -x 127.0.0.1

	;; <<>> DiG 9.2.1 <<>> -x 127.0.0.1
	;; global options: printcmd
	;; Got answer:
	;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31245
	;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0
	;; QUESTION SECTION: ;1.0.0.127.in-addr.arpa. IN PTR
	;;ANSWER SECTION: 1.0.0.127.in-addr.arpa. 604800 IN PTR localhost.
	;; AUTHORITY SECTION: 127.in-addr.arpa. 604800 IN NS ns.remix.bogus.
	;; Query time: 1 msec
	;; SERVER: 127.0.0.1 #53(127.0.0.1)
	;; WHEN: Mon Sep 1 22:23:35 2003
	;; MSG SIZE rcvd: 91

 Where we can see that the query has taken 1 millisecond. If you have an Internet connection, you can search for a machine within your domain and see the server performance and behaviour. In BIND9 there is the lwresd (lightweight resolver daemon), which is the daemon that provides naming services to clients that use the BIND9 lightweight resolver library. It is essentially a cache server (like the one we have configured) that makes the queries using BIND9 lightweight resolver protocol instead of the DNS protocol. This server listens through interface 127.0.0.1 (which means it only attends to processes in the local host) in UPD and port 921. The client requests are decrypted and resolved using the DNS protocol. When responses are obtained, the lwresd encodes them in the lightweight format and returns them to the client that has requested them.

 Finally, as we have mentioned, the kernel uses various sources of information, which, for the network, are obtained from /etc/nsswitch.conf. This file indicates from where we obtain the source of information and there is a section, for machine names and IPs, such as:

 hosts: files dns

 This line (if it is not there, it should be added) indicates that whoever needs a machine name or IP should first check /etc/hosts and then in DNS, in accordance with the domains indicated in /etc/resolv.conf.

 Forwarders

 In networks with a large workload, it is possible to balance the traffic using the section on forwarders. If your Internet Service Provider (ISP) has one or more stable name servers, it is advisable to use them to decongest the requests on the server. For this, we must delete the comment (//) from each line in the forwarders section of the /etc/bind/named.conf file and replace the 0.0.0.0 with the IPs of the name servers of our ISP. This configuration is advisable when the connection is slow, when using a modem, for example.

 Configuration of an own domain

 DNS possesses a tree structure and the origin is known as '.' (see /etc/bind/db.root). Beneath the '.' there are the TLDs (top level domains) such as org, com, edu, net etc. When searching in a server, if the server does not know the answer, the tree will be searched recursively until it is found. Each '.' in an address (for example, pirulo.remix.com) indicates a different branch of the DNS tree and a different scope for requesting (or responsibility) that will be followed recursively from left to right.

 Another important aspect, apart from the domain, is in-addr.arpa (inverse mapping), which is also nested as the domains and serves to obtain names when requesting by IP address. In this case, the addresses are written the other way round, in accordance with the domain. If pirulo.remix.com is 192.168.0.1, it will be written as 1.0.168.192, in accordance with pirulo.remix.com.

 We must then configure the actual remix.bogus domain in file /etc/bind/db.127 [LN01]:

 ; BIND reverse data file for local loopback interface
$TTL 604800
@ IN SOA ns.remix.bogus. root.remix.bogus. (
 1 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
@ IN NS ns.remix.bogus.
1.0.0 IN PTR localhost.

 The '.' must be taken into account at the end of the domain names. The origin of a zone's hierarchy is specified by the identification of the zone, which in our case, is 127.in-addr.arpa. This file (db.127) contains 3 registries: SOA, NS, PTR. The SOA (start of authority) must be in all of the zone files, at the beginning, after TTL and the @ signifies the origin of the domain; NS, the name server for the domain and PTR (domain name pointer), which is host 1 in the subnet (127.0.0.1) and is called local host. This is the series 1 file and root@remix.bogus (last space in the SOA line) is in charge of it. We could now restart the named as shown above and, using dig -x 127.0.0.1, we could see how it works (identically to that shown previously).

 We would then have to add a new zone in named.conf:

	zone "remix.bogus" {
	 type master;
	 notify no;
	 file "/etc/bind/remix.bogus";
	 };

 We must remember that in named.conf, the domains appear without the '.' at the end. In the file remix.boguswe will put the hosts of which we will be in charge:

 ; Zone file for remix.bogus
$TTL 604800
@ IN SOA ns.remix.bogus. 	root.remix.bogus. (
 199802151 ; serial, todays date + todays serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
@ NS ns ; Inet Address of name server
 MX 10 mail.remix.bogus. ; Primary Mail Exchanger
localhost A 127.0.0.1
ns A 192.168.1.2
mail A 192.168.1.4
 TXT "Mail Server"
ftp A 192.168.1.5
 MX 10 mail
www CNAME ftp

 A new MX registry, the Mail exchanger, appears here. This is the place to which the emails that arrive will be sent, someone@remix.bogus, and they will be sent to mail.remix.bogus (the number indicates the priority if we have more than one MX). Always remember the '.' that is necessary in the zone files at the end of the domain (if these are not entered, the system will add the SOA domain at the end, which would transform mail.remix.bogus, for example, into mail.remix.bogus.remix.bogus, which would be incorrect). CNAME (canonical name) is used to give a machine one alias or various aliases. As of this moment, we would be able (after the /etc/init.d/bind9 reload) to test, for example, dig www.remix.bogus
 .

 The last step is to configure the inverse zone, in other words, so that IP addresses can be changed into names, for example, adding a new zone:

	zone "192.168.1.in-addr.arpa" {
	 type master;
	 notify no;
	 file "/etc/bind/192.168.1";
	 };

 And the file /etc/bind/192.168.1 similar to the preceding one:

 $TTL 604800
@ IN SOA ns.remix.bogus. root.remix.bogus. (
 199802151 ; serial, todays date + todays serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
@ NS ns.remix.bogus.
2 PTR ns.remix.bogus
4 PTR mail.remix.bogus
5 PTR ftp.remix.bogus

 This can be tested again with dig -x 192.168.1.4. We must remember that these examples are on private IPs, in other words, not on Internet IPs. Another important point is that we must not forget the notify no, as otherwise, our experiments with the DNS will spread to the servers through the DNS tree (possibly even modifying the DNS of our provider or institution). These should only be modified when we are sure that it works and we are certain about the changes we want to make. To look at a real example, please see DNS-HOWTO at http://tldp.org/HOWTO/DNS-HOWTO-7.html.

 Once we have created a master server, we must create a slave server for security, which is identical to the master, except in that the zone in the place of the type master must have a slave and the IP of the master. For example:

	zone "remix.bogus" {
	 type slave;
	 notify no;
	 masters {192.168.1.2; }
	 };

GNU/Linux systems

 Twenty years ago the users of the first personal computers did not have many operating systems to choose from. The market for personal computers was dominated by Microsoft DOS. Another possibility was Apple's MAC, but at an exorbitant cost in comparison to the rest. Another important option reserved to large (and expensive) machines was UNIX.

 A first option to appear was MINIX (1984), created from scratch by Andrew Tanenbaum, for educational purposes in order to teach how to design and implement operating systems [Tan87] [Tan06].

 MINIX was conceived for running on an Intel 8086 platform, which was very popular at the time as it was the basis for the first IBM PCs. The main advantage of this operating system stemmed from its source code, which was accessible to anyone (twelve thousand lines of code for assembler and C), and available from Tanenbaum's teaching books on operating systems [Tan87]. However, MINIX was an educational tool rather than an efficient system designed for professional performance or activities.

 In the nineties, the Free Software Foundation (FSF) and its GNU project, motivated many programmers to promote quality and freely distributed software. And aside from utilities software, work was being done on the kernel of an operating system known as HURD, which would take several years to develop.

 Meanwhile, in October 1991, a Finnish student called Linus Torvalds presented version 0.0.1 of his operating system's kernel, which he called Linux, designed for Intel 386 machines, and offered under a GPL license to communities of programmers and the Internet community for testing, and if they liked it, for helping with its development. There was such enthusiasm that in no time a large number of programmers were working on the kernel or on applications for it.

 Some of the features that distinguished Linux from other operating systems of the time and which continue to be applicable, and others inherited from UNIX could be:

 a)	It is an open source operating system: anyone can have access to its sources, change them and create new versions that can be shared under the GPL license (which, in fact, makes it free software).

 b) 	Portability: like the original UNIX, Linux is designed to depend very little on the architecture of a specific machine; as a result, Linux is, mostly, independent from its destination machine and can be carried to practically any architecture with a C compiler such as the GNU gcc. There are just small parts of assembler code and a few devices that depend on the machine, which need to be rewritten at each port to a new architecture. Thanks to this, GNU/Linux is one of the operating systems running on the largest number of architectures: Intel x86 and IA64, AMD x86 and x86_64, Sun's SPARC, MIPS of Silicon, PowerPC (Apple), IBM S390, Alpha by Compaq, m68k Motorola, Vax, ARM, HPPArisc...

 c) Monolith-type	kernel: the design of the kernel is joined into a single piece but is conceptually modular in its different tasks. Another school of design for operating systems advocates microkernels (Mach is an example), where services are implemented as separate processes communicated by a more basic (micro) kernel. Linux was conceived as a monolith because it is difficult to obtain good performance from microkernels (it is a hard and complex task). At the same time, the problem with monoliths is that when they grow they become very large and untreatable for development; dynamic load modules were used to try to resolve this.

 Example 1.11. Note

 Original Mach project:

 http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html

 d) 	Dynamically loadable modules: these make it possible to have parts of the operating system, such as file systems, or device controllers, as external parts that are loaded (or linked) with the kernel at run-time on-demand. This makes it possible to simplify the kernel and to offer these functionalities as elements that can be separately programmed. With this use of modules, Linux could be considered to be a mixed kernel, because it is monolithic but offers a number of modules that complement the kernel (similar to the microkernel concepts).

 e) 	System developed by an Internet-linked community: operating systems had never been developed so extensively and dispersely, they tend not to leave the company that develops them (in the case of proprietary systems) or the small group of academic institutions that collaborate in order to create one. The phenomenon of the Linux community allows everyone to collaborate as much as their time and knowledge will permit. The result is: hundreds to thousands of developers for Linux. Additionally, because of its open-source nature, Linux is an ideal laboratory for testing ideas for operating systems at minimum cost; it can be implemented, tested, measures can be taken and the idea can be added to the kernel if it works.

 Projects succeeded each other and – at the outset of Linux with the kernel – the people of the FSF, with the GNU utility software and, above all, with the (GCC) C compiler, were joined by other important projects such as XFree (a PC version of X Window), and desktop projects such as KDE and Gnome. And the Internet development with projects such as the Apache web server, the Mozilla navigator, or MySQL and PostgreSQL databases, ended up giving the initial Linux kernel a sufficient coverage of applications to build the GNU/Linux systems and to compete on an equal level with proprietary systems. And to convert the GNU/Linux systems into the paradigm of Open Source software.

 GNU/Linux systems have become the tip of the spear of the Open Source community, for the number of projects they have been capable of drawing together and concluding successfully.

 The birth of new companies that created GNU/Linux distributions (packaging of the kernel + applications) and supported it, such as Red Hat, Mandrake, SuSe, helped to introduce GNU/Linux to reluctant companies and to initiate the unstoppable growth we are now witnessing today.

 We will also comment on the debate over the naming of systems such as GNU/Linux. The term Linux is commonly used (in order to simplify the name) to identify this operating system, although in some people's opinion it undermines the work done by the FSF with the GNU project, which has provided the system's main tools. Even so, the term Linux, is extensively used commercially in order to refer to the full operating system.

 Example 1.12. Note

 GNU and Linux by RichardStallman:

 http://www.gnu.org/gnu/ linux-and-gnu.html.

 In general, a more appropriate term that would reflect the community's participation, is Linux, when we are referring only to the operating system's kernel. This has caused a certain amount of confusion because people talk about the Linux operating system in order to abbreviate. When we work with a GNU/Linux operating system, we are working with a series of utilities software that is mostly the outcome of the GNU project on the Linux kernel. Therefore, the system is basically GNU with a Linux kernel.

 The purpose of the FSF's GNU project was to create a UNIX-style free software operating system called GNU [Sta02].

 In 1991, Linus Torvalds managed to join his Linux kernel with the GNU utilities when FSF still didn't have a kernel. GNU's kernel is called HURD, and quite a lot of work is being done on it at present, and there are already beta versions available of GNU/HURD distributions (see more under the chapter "Kernel Administration").

 Important

 It is estimated that in a GNU/Linux distribution there is 28% of GNU code and 3% that corresponds to the Linux kernel code; the remaining percentage corresponds to third parties, whether for applications or utilities.

 To highlight GNU's contribution [FSF], we can look at some of its contributions included in GNU/Linux systems:

	
 The C and C++ compiler (GCC)

	
 The bash shell

	
 The Emacs editor (GNU Emacs)

	
 The postscript interpreter (ghostscript)

	
 The standard C library (GNU C library, or glibc)

	
 The debugger (GNU gdb)

	

 Makefile (GNU make)

	
 The assembler (GNU assembler or gas)

	
 The linker (GNU linker or gld)

 GNU/Linux systems are not the only systems to use GNU software; for example, BSD systems also incorporate GNU utilities. And some proprietary operating systems such as MacOS X (Apple) also use GNU software. The GNU project has produced high quality software that has been incorporated into most UNIX-based system distributions, both free and proprietary.

 Important

 It is only fair for the world to recognise everyone's work by calling the systems we will deal with GNU/Linux.

Chapter 11. Clustering

 Remo Suppi Boldrito

 GNUFDL

2009-09-01

 preface

 A computer cluster refers to a group of computers working closely together with a common aim. These computers consist of hardware, communication networks and software for working together as though they were all part of one single system. There are various reasons for which it would be desirable to set up these clusters, but one of the main ones is so as to be able to process information more efficiently and quicker, as though it were a single system. Generally, a cluster works on a local area network (LAN) and provides efficient communication, although the machines will be located close to each other physically. A bigger version of the concept is the grid, where the aim is the same, but it involves groups of computers connected to each other through a wide area network (WAN). Some programmers think of the grid as a cluster of clusters in a 'global' sense. Although the increasingly advanced technology and decreasing costs make it easier to set up these types of systems, the complexity and efforts required to use dozens or hundreds (or, in some cases, thousands) of computers are very great. However, the advantages in computing time mean that, despite this situation, these types of high performance computing (HPC) solutions are considered very attractive and are constantly developing. In this unit, we will show some of the most widely spread and used approaches. [Rad, Dieb, Prob, Prod, Proe, Gloa]

 Example 11.1. Note

 A cluster is a group of computers working closely together, often connected on a LAN.

 Grids are groups of computers connected with wide area networks (WAN).

Kernel modules

 The kernel is capable of loading dynamic portions of code (modules) on demand [Hen], in order to complement its functionality (this possibility is available from kernel version 1.2 and higher). For example, the modules can add support for a file system or for specific hardware devices. When the functionality provided by the module is not necessary, the module can be downloaded, freeing up memory.

 On demand, the kernel usually identifies a characteristic not present in the kernel at that moment it makes contact with a thread of the kernel known as kmod (in kernel versions 2.0.x the daemon was called kerneld), this executes a command, modprobe, to try and load the associated module from or of a chain with the name of the module or else from an generic identifier; this information is found in the file /etc/modules.conf in the form of an alias between the name and the identifier.

 Next, we search in /lib/modules/version_kernel/modules.dep

 to find out whether there are dependencies with other modules. Finally, with the insmod command the module is loaded from /lib/modules/version_kernel/ (the standard directory for modules), the version_kernel is the current version of the kernel using the uname -r command in order to set it. Therefore, the modules in binary form are related to a specific version of the kernel, and are usually located in /lib/modules/version-kernel.

 If we need to compile them, we will need to have the sources and/or headers of the version of the core for which it is designed.

 Example 4.10. Note

 The modules offer the system a large degree of flexibility, allowing it to adapt to dynamic situations.

 There are some utilities that allow us to work with modules (they usually appear in a software package called modutils, which was replaced by the module -init-tools for managing modules of the 2.6.x branch):

	

 lsmod: we can see the loaded modules in the kernel (the information is obtained from the pseudofile /proc/modules). It lists the names and dependencies with others (in []), the size of the module in bytes, and the module use counter; this allows it to be downloaded if the count is zero.

 Example 4.11. Example

 Some modules in a Debian distribution:

 	

 Module

 	

 Size

 	

 Used by

 	

 Tainted: P

	

 agpgart

 	

 37.344

 	

 3

 	

 (autoclean)

	

 apm

 	

 10.024

 	

 1

 	

 (autoclean)

	

 parport_pc

 	

 23.304

 	

 1

 	

 (autoclean)

	

 lp

 	

 6.816

 	

 0

 	

 (autoclean)

	

 parport

 	

 25.992

 	

 1

 	

 [parport_pc lp]

	

 snd

 	

 30.884

 	

 0

 	
	

 af_packet

 	

 13.448

 	

 1

 	

 (autoclean)

	

 NVIDIA

 	

 1.539.872

 	

 10

 	
	

 es1371

 	

 27.116

 	

 1

 	
	

 soundcore

 	

 3.972

 	

 4

 	

 [snd es1371]

	

 ac97_codec

 	

 10.9640

 	

 0

 	

 [es1371]

	

 gameport

 	

 1.676

 	

 0

 	

 [es1371]

	

 3c59x

 	

 26.960

 	

 1

 	

 •	modprobe: tries the loading of a module and its dependencies.

 •	insmod: loads a specific module.

 •	depmod: analyses dependencies between modules and creates a file of dependencies.

 •	rmmod: removes a module from the kernel.

 •	Other commands can be used for debugging or analysing modules, like modinfo, which lists some information associated to the module or ksyms, which (only in versions 2.4.x) allows examination of the symbols exported by the modules (also in /proc/ksyms).

 In order to load the module the name of the module is usually specified, either by the kernel itself or manually by the user using insmod and specific parameters optionally. For example, in the case of devices, it is usual to specify the addresses of the I/O ports or IRQ or DMA resources. For example:

 insmod soundx io = 0x320 irq = 5

File transfer services: FTP

 Important

 The file transfer protocol (FTP) is a client/server protocol (under TCP) which allows files to be transferred to and from a remote system. An FTP server is a computer that runs the ftpd daemon.

 Some sites that allow an anonymous connection under anonymous user are generally software repositories. On a private site, we will need a username and password in order to obtain access. It is also possible to access an FTP server via a navigator and nowadays software repositories are usually replaced by web servers (e.g. Apache) or other technologies such as Bittorrent (which uses peer to peer (P2P) networks). Nonetheless, in some cases and with Debian, for example, access continues to use the username or password with the possibility of uploading files to the server (although this is also possible with web services). The file transfer protocol (FTP) (and servers/clients that implement it) by definition are not encrypted (the data, usernames and passwords are transmitted in clear text by the network) with its ensuing risk. But there are a number of servers/clients that support SSL and therefore, encryption.

 FTP client (conventional)

 An FTP client allows acces to FTP servers and there are a large number of clients available. Using FTP is extremely simple; from the command line, run:

 ftp server-name

 Or also FTP, and then interactively:

 open server-name

 The server will prompt for a username and a password (if it accepts anonymous users, anonymous will be entered as the username and our e-mail address as the password) and from the command prompt (following several messages) we will be able to start transferring files.

 The protocol allows the transfer in ASCII or binary modes. It is important to decide what type of file has to be transferred because transferring a binary in ASCII mode will destroy the file. To change between modes, we will need to execute the ascii or binary command. Useful commands of the FTP client are the ls (navigation in the remote directory), get file_name (to download files) or mget (which admits *), put file_name (to send files to the server) or mput (which admits *); in these last two cases we need to be authorised to write on the server's directory. We can run local commands by entering a '!' before the command. For example !cd /tmp will mean that the files downloaded to the local machine will be downloaded to /tmp. In order to view the status and functioning of the transfer, the client will be able to print marks, or ticks, which are activated by the hash and tick commands. There are other commands that can be consulted on the page of the manual (FTP man) or by running help from within the client.

 We have numerous alternatives for clients, for example in text mode: ncftp, lukemftp, lftp, cftp, yafc, or in graphic mode: gFTP, WXftp, LLNL XFTP, guiftp. [Bor00]

 FTP servers

 The traditional UNIX server is run through port 21 and is booted by the inetd daemon (or xinetd depending on which one is installed). In inetd.conf it is advisable to include the tcpd wrapper with the access rules in host.allow and host.deny in the call to ftpd by inetd to increase the system's security (refer to the chapter on security). When it receives a connection, it verifies the user and password and allows entry if authentication is correct. An anonymous FTP works differently, since the user will only be able to access an established directory in the configuration file and its subjacent tree, but not upwards, for security reasons. This directory generally contains pub/, bin/, etc/, and lib/ directories so that the FTP daemon can run external commands for ls requests. The ftpd daemon supports the following files for its configuration:

	
 /etc/ftpusers: list of users that are not accepted on the system, one user per line.

	
 /etc/ftpchroot: list of users whose base chroot directory will be changed when they connect. Necessary when we want to configure an anonymous server.

	
 /etc/ftpwelcome: welcome announcement.

	
 /etc/motd: news after login.

	
 /etc/nologin: message shown after denying the connection.

	
 /var/log/ftpd: log of transfers.

 If at some point we wish to inhibit the FTP connection, we can do so by including the /etc/nologin file. The ftpd will show its content and finish. If there is a .message file in a directory, the ftpd will show this when accessed.

 A user's connection passes through five different levels:

 1) Having a valid password.

 2) Not appearing on the list /etc/ftpusers.

 3) Having a valid standard shell.

 4) If it appears in /etc/ftpchroot, it will be changed to the home directory (included if anonymous or FTP).

 5) If the user is anonymous or FTP, it should have an entry in the /etc/passwd with FTP user, but will be able to connect by giving any password (conventionally the e-mail address is used).

 It is important to bear in mind that the users that are only enabled to use the FTP service do not have a shell to the corresponding entry user in /etc/passwd to prevent this user having a connection through ssh or telnet, for example. Therefore, when the user is created, we will have to indicate, for example:

 useradd -d/home/nteum -s /bin/false nteum

 And then:

 passwd nteum

 Which will mean that the user nteum will not have a shell for an interactive connection (if the user already exists, we can edit the /etc/passwd file and change the last field for /bin/false). Then we will have to add as a last line /bin/false in /ect/shells. [Mou01] describes step by step how to create both a secure FTP server with registered users and an anonymous FTP server for non-registered users. Two of the most common non-standard servers are WUFTPD (http://www.wuftpd.org) and ProFTPD (http://www.proftpd.org). [Bor00, Mou01]

 To install Proftpd on Debian, execute: apt-get install proftpd. After it is downloaded, debconf will ask if we want to run it by inetd or in manual mode (it is advisable to select the latter). If we wish to stop the service (for example, in order to change the configuration), we can use /etc/init.d/proftpd stop and to modify the file we can use /etc/proftpd.conf.

 Consult http://www.debian-administration.org/articles/228 in order to configure it in encrypted mode (TSL) or to have anonymous access.

 A Debian server that is very interesting is PureFtpd (pure-ftpd) which is very secure, it allows virtual users, quotas, SSL/TSL, and a set of very interesting features. We can check its installation/configuration at
http://www.debian-administration.org/articles/383.

Boot and run levels

 A first important point in the analysis of a system's local performance is how it works on the runlevels, which determine the current work mode of the system and the services provided (on the level) [Wm02].

 A service is a functionality provided by the machine, normally based on daemons (or background execution processes that control network requests, hardware activity or other programs that provide any task).

 The services can be activated or halted using scripts. Most standard processes, which are usually configured in the /etc directory, tend to be controlled with the scripts in /etc/init.d/. Scripts with names similar to those of the service to which they correspond usually appear in this directory and starting or stopping parameters are usually accepted. The following actions are taken:

 	

 /etc/init.d/service start

 	start the service.
	

 /etc/init.d/service stop

 	stop the service.
	

 /etc/init.d/service restart

 	stop and subsequent
	 	restart of the service.

 When a GNU/Linux system starts up, first the system's kernel is loaded, then the first process begins; this process is called init and it has to execute and activate the rest of the system, through the management of different runlevels.

 Important

 A runlevel is basically a configuration of programs and services that will be executed in order to carry out determined tasks.

 The typical levels, although there may be differences in the order, especially at levels 2-5 (in the configuration table in Fedora and that recommended in the LSB standard), are usually:

 	

 Runlevel

 	

 Function

 	

 Description

	
 0

 	
 Halt

 	
 Halts or shuts down the active services and programs, and umounts active file systems for CPU.

	
 1

 	
 Single-user mode

 	
 Halts or shuts down most services, only permitting the (root) administrator to login. Used for maintenance tasks and correcting critical errors.

	
 2

 	
 Multi-user mode without networking

 	
 No networking services are started and only local logins are allowed.

	
 3

 	
 Multi-user

 	
 Starts up all the services except the graphics associated to X Window.

	
 4

 	
 Multi-user

 	
 Not usually used; normally the same as 3.

	
 5

 	
 Multi-user X

 	
 As with 3, but with X support for user logins (graphic login).

	
 6

 	
 Reboot

 	
 For all programs and services. Reboots the system.

 On the other hand, it should be noted that Debian uses a model in which practically no distinction is made between runlevels 2-5 and performs exactly the same task (although this may change in a future version, so that these levels correspond with the LSB).

 These runlevels are usually configured in GNU/Linux systems (and UNIX) by two different systems: BSD or System V (sometimes abbreviated to sysV). In the cases of Fedora and Debian, System V is used, which is the one that we will examine, but other UNIX and some GNU/Linux distributions (such as Slackware) use the BSD model.

 In the case of the runlevel model of System V, when the init process begins, it uses a configuration file called /etc/inittab to decide on the execution mode it will enter. This file defines the runlevel by default (initdefault) at start-up (by installation, 5 in Fedora and 2 in Debian), and a series of terminal services that must be activated so that users may log in.

 Afterwards, the system, according to the selected runlevel, will consult the files contained in /etc/rcn.d, where n is the number associated to the runlevel (the selected level), which contains a list of services that should be started or halted if we boot up in the runlevel or abandon it. Within the directory, we will find a series of scripts or links to the scripts that control the service.

 Each script has a number related to the service, an S or K initial that indicates whether it is the script for starting (S) or killing (K) the service, and a number that shows the order in which the services will be executed.

 A series of system commands help us to handle the runlevels; we must mention:

	
 The scripts, which we have already seen, in /etc/init.d/ allow us to start-up, halt or reboot individual services.

	
 telinit, allows us to change the runlevel; we simply have to indicate the number. For example, we have to perform a critical task in root; with no users working, we can perform a telinit 1 (S may also be used) to pass to the single-user runlevel and then, after the task, a telinit 3 to return to multi-user mode. The init command may also be used for the same task, although telinit does provide a few extra parameters. For example, the typical reboot of a UNIX system would be performed with sync; init 6, the sync command forces the buffers of the files system to empty, and then we reboot at runlevel 6.

	
 shutdown allows us to halt ("h") or reboot the system ("r"). This may be performed in a given period of time or immediately. There are also the halt and reboot commands for these tasks.

	
 wall allows us to send warning messages to the system users. Specifically, the administrator may warn users that the machine is going to stop at a determined moment. Commands such as shutdown usually use them automatically.

	
 pidof permits us to find out the process ID associated to a process. With ps we obtain the lists of the processes, and if we wish to eliminate a service or process through a kill, we will need its PID.

 There are some small changes in the distributions, with regard to the start-up model:

	
 Fedora/Red Hat: runlevel 4 has no declared use. The /etc/rcn.d directories exist as links to /etc/rc.d subdirectories, where the start-up scripts are centralised. The directories are as follows: /etc/rc.d/rcn.d; but as the links exist, it is transparent to the user. The default runlevel is 5 when starting up with X.

 The commands and files associated to the system's start-up are in the sysvinit and initscripts software packages.

 Regarding the changes to files and scripts in Fedora, we must point out that in /etc/sysconfig we can find files that specify the default values for the configuration of devices or services. The /etc/rc.d/rc.sysinit script is invoked once when the system starts-up; The /etc/rc.d/rc.local script is invoked at the end of the process and serves to indicate the machine's specific boots.

 The real start-up of the services is carried out through the scripts stored in /etc/rc.d/init.d. There is also a link from /etc/init.d. In addition, Fedora provides some useful scripts for handling the services: /sbin/service to halt or start-up a service by the name; and /sbin/chkconfig, to add links to the S and K files that are necessary for a service or to obtain information on the services.

	
 Debian has management commands for the runlevels such as update-rc.d, that allows us to install or delete services by booting them or halting them in one or more runlevels; invoke-rc.d, allows the classic operations for starting-up, halting or rebooting the service.

 The default runlevel in Debian is 2, the X Window System is not managed from /etc/inittab; instead there is a manager (for example, gdm or kdm) that works as if it were another of the services of runlevel 2.

Virtual private network (VPN)

 Important

 A VPN (virtual private network) is a network that uses Internet to transport data, but stops any external members from accessing that data.

 This means that we have a network with connected VPN nodes tunnelled through another network, through which the traffic passes and with which no one can interact. It is used when remote users wish to access a corporate network to maintain the security and privacy of the data. Various methods can be used to configure a VPN, such as SSH (SSL), CIPE, IPSec, PPTP; they can be consulted in the bibliography (we recommend consulting VPN PPP-SSH HOWTO, by Scott Bronson and VPN-HOWTO by Matthew D. Wilson). [Bro01, Wil02].

 In order to perform the configuration tests in this section, we will use OpenVPN, which is a solution based on SSL VPN and can be used for a wide range of solutions, for example, remote access, VPN point to point, secure WiFi networks or distributed corporate networks. OpenVPN implements OSI layer 2 or 3 using SSL/TLS protocols and supports authentication based on certificates, smart cards and other confirmation methods. OpenVPN is not a proxy applications server and does not operate through a web browser.

 In order to analyse it, we will use an option in OpenVPN called OpenVPN for Static key configurations, which provides a simple method for configuring a VPN that is ideal for tests or point-to-point connections. The advantages are the simplicity and the fact that it is not necessary to have a X509 public key infrastructure (PKI) certificate to maintain the VPN. The disadvantages are that it only permits one client and one server, as, because the public key and private key are not used, there may be the same keys as in previous sessions and there must be a text-mode key in each peer and the secret key must be previously exchanged for a secure channel.

 Simple example

 In this example, we will configure a VPN tunnel on a server with IP=10.8.0.1 and a client with IP=10.8.0.2. The communication will be encrypted between the client and server on a UDP port 1194, which is the default port in OpenVPN. After installing the package (http://openvpn.net/install.html), we must generate the static key:

 openvpn --genkey --secret static.key

 Then, we must copy the static.key file in the other peer over a secure channel (using ssh or scp, for example). The server configuration file of the openVPN_server for example:

 dev tun
ifconfig 10.8.0.1 10.8.0.2
secret static.key

 The client configuration file for example openVPN_client

 remote myremote.mydomain
dev tun
ifconfig 10.8.0.2 10.8.0.1
secret static.key

 Before verifying that the VPN works, we must verify the firewall to check that port 1194 UDP is open on a server and that the virtual interface tun0 used by OpenVPN is not blocked either over the client or over the server. Bear in mind that 90% of the connection problems faced by new OpenVPN users are related in some way to the firewall.

 In order to verify the OpenVPN between two machines, we must change the IPs for the real ones and the domain for the corresponding one, and then execute the server side.

 	openvpn [server config file]

 Which will provide an output such as:

 Sun Feb 6 20:46:38 2005 OpenVPN 2.0_rc12 i686-suse-linux [SSL] [LZO] [EPOLL] built on Feb 5 2005

Sun Feb 6 20:46:38 2005 Diffie-Hellman initialized with 1024 bit key

Sun Feb 6 20:46:38 2005 TLS-Auth MTU parms [L:1542 D:138 EF:38 EB:0 ET:0 EL:0]

Sun Feb 6 20:46:38 2005 TUN/TAP device tun1 opened

Sun Feb 6 20:46:38 2005 /sbin/ifconfig tun1 10.8.0.1 pointopoint 10.8.0.2 mtu 1500

Sun Feb 6 20:46:38 2005 /sbin/route add -net 10.8.0.0 netmask 255.255.255.0 gw 10.8.0.2

Sun Feb 6 20:46:38 2005 Data Channel MTU parms [L:1542 D:1450 EF:42 EB:23 ET:0 EL:0 AF:3/1]

Sun Feb 6 20:46:38 2005 UDPv4 link local (bound): [undef]:1194

Sun Feb 6 20:46:38 2005 UDPv4 link remote: [undef]

Sun Feb 6 20:46:38 2005 MULTI: multi_init called, r=256 v=256

Sun Feb 6 20:46:38 2005 IFCONFIG POOL: base=10.8.0.4 size=62

Sun Feb 6 20:46:38 2005 IFCONFIG POOL LIST

Sun Feb 6 20:46:38 2005 Initialization Sequence Completed

 And the client side:

 	openvpn [client config file]

 In order to check that it works, we might ping 10.8.0.2 from the server and ping 10.8.0.1 from the client. For more information, please check http://openvpn.net/howto.html.

 To add compression to the link, we must add the following line to the two configuration files:

 comp-lzo

 In order to protect the connection through a NAT router/firewall alive and carry on the IP changes through a DNS, if one of the peers changes, add the following to the two configuration files:

 keng-timer-rem

persist-tun

peepalive 10 60

pirsist-key

 To execute as a daemon with the privileges of the nobody user/group, add the following to the configuration files:

 user nobody

group nobody

Daemon

Bibliography

 bibliography

 Other sources of reference and information

 [LPD] Linux Documentation Project offers Howtos regarding different aspects of a GNU/Linux system and a set of more detailed manuals.

 [Mor03] Good reference for the configuration of Linux systems, with some case studies in different environments; comments on different distributions of Debian and Red Hat.

Introduction to High Performance Computing (HPC)

 The advances in technology have resulted in fast, low-cost and highly efficient processors and networks, which have brought about a change in the cost/performance ratio in favour of using interconnected processing systems in a single high-speed processor. This type of architecture can be classified into two basic configurations:

	

 Tighly coupled systems: these are systems in which the memory is shared by all the processors (shared memory systems) and the memory of each processor is 'seen' (by the programmer) as one single memory.

	

 Loosely coupled systems: they do not share memory (each processor has its own) and they communicate through messages passed through a network (message passing systems).

 The first example is known as a parallel processing system and the second as a distributed computing system. In the latter case, we can say that a distributed system is a set of processors interconnected on a network in which each processor has its own resources (memory and peripherals) and they communicate by exchanging messages on the network.

 Computing systems are a relatively recent phenomenon (we could say that computing history started in the seventies). Initially, they consisted of large, heavy, expensive systems, which could only be used by a few experts and they were inaccessible and slow. In the seventies, advances in technology led to some substantial improvements carried out using interactive jobs, time sharing and terminals and the sizes of the computers were reduced considerably. The eighties were characterised by a significant improvement in the performance and efficiency (which has continued to today) and a dramatic reduction in the sizes, with the creation of microcomputers. Computing continued to develop through workstations and advances in networking (from 10 Mbits/s LANs and 56 Kbytes/s WANs in 1973 to today's 1Gbit/s LANs and WANs with asynchronous transfer mode (ATM) and 1.2 Gbits/s), which is a fundamental factor in current multimedia applications and those that will be developed in the near future. Distributed systems, for their part, originated in the seventies (systems with 4 or 8 computers), but really became widespread in the nineties.

 Although administrating/installing/maintaining distributed systems is a complicated task, given that they continue to grow, the basic reasons for their popularity are the increase in performance and efficiency that they provide in inherently distributed applications (due to their nature), the information that can be shared by a group of users, the sharing of resources, the high fault tolerance and the possibility of ongoing expansion (the ability to add more nodes to gradually and continuously increase the performance and efficiency).

 In the following sections we will look at some of the most common parallel/distributed processing systems, as well as the programming models used to generate code that can use these features.

 Beowulf

 Beowulf [Rad, Beo] is a multi-computer architecture that can be used for parallel/distributed applications (APD). The system basically consists of a server and one or more clients connected (generally) through Ethernet, without using any specific hardware. To explore this processing capacity, it is necessary for the programmers to have a distributed programming model that, whilst it is true that it is possible to do this through UNIX (socket, rpc), may require a very significant effort, given that the programming models are at the level of systems calls and C language, for example; but this working method can be considered as low-level.

 The software layer provided by systems such as parallel virtual machine (PVM) and message passing interface (MPI) facilitates significantly the abstraction of the system and makes it possible to program parallel/distributed applications easily and simply. The basic working form is master-workers, in which there is a server that distributes the task that the workers perform. In large systems (systems with 1,024 nodes), there is more than one master and nodes dedicated to special tasks such as, for example, in/out or monitoring.

 Example 11.2. Note

 Various options:

	
 Beowulf

	
 OpenMosix

	
 Grid (Globus)

 One of the main differences between Beowulf and a cluster of workstations (COW) is that Beowulf is 'seen' as a single machine in which the nodes are accessed remotely, as they do not have a terminal (or a keyboard), whereas a COW is a group of computers that can be used by both the COW users and other users interactively through the screen and keyboard. We must remember that Beowulf is not software that transforms the user's code into distributed code or that affects the kernel of the operating system (like Mosix, for example). It is simply a way of creating a cluster of machines that execute GNU/Linux and act as a supercomputer. Obviously, there are many tools that make it possible to achieve an easier configuration, library or modification to the kernel for obtaining better performance levels, but it is also possible to build a Beowulf cluster from a GNU/Linux standard and conventional software. The construction of a Beowulf cluster with two nodes, for example, can be achieved simply with the two machines connected through Ethernet using a hub, a standard GNU/ Linux distribution (Debian) and the network file system (NFS) and after enabling the network services such as rsh or ssh. In such a situation, we might argue that we have a simple two node cluster.

 How do we configure the nodes?

 First, we must modify (each node) /etc/hosts so that the localhost line only has 127.0.0.1 and does not include any machine name, such as:

 127.0.0.1 localhost

 And add the IPs of the nodes (and for all the nodes), for example:

	192.168.0.1 pirulo1
	192.168.0.2 pirulo2
	...

 It is possible to create a user (nteum) in all the nodes, create a group and add this user to the group:

 groupadd beowulf

adduser nteum beowulf

echo umask 007 >> /home/nteum/.bash_profile

 In this way, any file created by the nteum user or any within the group can be modified by the Beowulf cluster.

 We must create an NFS server (and the rest of the nodes will be clients of this NFS). On the server, we create a directory as follows:

 mkdir /mnt/nteum
chmod 770 /mnt/nteum
chown -R nteum:beowulf /mnt/nteum

	Now we can export this directory from the server.
	
 cd /etc

	
 cat >> exports

	
 /mnt/wolf 192.168.0.100/192.168.0.255 (rw)
<control d>

 We must remember that our network will be 192.168.0.xxx and it is a private network, in other words, the cluster will not be seen from the Internet and we must adjust the configurations so that all the nodes can see each other (from the firewalls).

 We should verify that the services are working:

 	chkconfig -add sshd

chkconfig -add nfs

chkconfig -add rexec

chkconfig -add rlogin

chkconfig -level 3 rsh on

chkconfig -level 3 nfs on

chkconfig -level 3 rexec on

chkconfig -level 3 rlogin on

 To work securely, it is important to work with ssh instead of rsh, which means that we must generate the keys for interconnecting the machines-nteum user securely, without a password. To do this, we modify (we remove the comment #) the following lines in /etc/ssh/sshd_config:

	RSAAuthentication yes
	AuthorizedKeysFile .ssh/authorized_keys

 We reboot the machine and we connect as the nteum user, given that this user will operate the cluster. To generate keys:

 ssh-keygen -b 1024 -f ~/.ssh/id_rsa -t rsa -N ""

 The id_rsa and id_rsa.pub files will have been created in the /home/nteum/.ssh library directory and we must copy id_rsa.pub in a file called authorized_keys in the same directory. And we modify the permissions with chmod 644 ~/.ssh/aut* and chmod 755 ~/.ssh.

 Given that only the main node will be connected to the others (and not the other way round) we only need to copy the public key (d_rsa.pub) to each node in the directory/file /home/nteum/.ssh/authorized_keys of each node. In addition, on each node, we will have to mount the NFS adding /etc/fstab the line pirulo1:/mnt/nteum /mnt/nteum nfs rw,hard,intr 0 0.

 As of this point, we already have a Beowulf cluster for executing applications that could be PVM or MPI (we will see this in the following sections). Over FC, there is an application (system-config-cluster) that makes it possible to configure a cluster based on a graphic tool. For more information, please see: http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Cluster_Administration/index.html.

 Benefits of distributed computing

 What are the benefits of parallel computing? We will see these with an example [Rad]. We have a program for adding numbers (for example, 4 + 5 + 6...) called sumdis.c and written in C:

 #include <stdio.h>

		int main (int argc, char** argv){

float initial, final, result, tmp;

if (argc < 2) {
		printf ("Use: %s N.º initial N.º final\n",argv[0]);
		exit(1);
		}
else {
		initial = atol (argv[1]);
		final = atol (argv[2]);
		result = 0.0;
		}
		for (tmp = inicial; tmp <= final; tmp++){
		result + = tmp; }
printf("%f\n", result)
return 0;
}

 We compile it with gcc -o sumdis sumdis.c and if we look at the execution of this program, with, for example:

 time ./sumdis 1 1000000 	(from 1 to 106)

 we can see that the time in a Debian 2.4.18 machine with AMD Athlon 1.400 MHz 256 Mb RAM is (approximately) real = 0,013 and user = 0,010 in other words, 13 ms in total and 10 ms inuser zone. If, however, we enter:

 time ./sum 1 16000000 	(from 1 to 16 * 106)

 the time will be real = 182, in other words, 14 times more, which means, if we consider 160.000.000 (160*106), the time will be approximately dozens of minutes.

 The idea of distributed computing is: if we have a cluster of 4 machines (node1-node4) with a server, where the file is shared by NFS, it would be interesting to divide the execution through rsh (not advisable, but it is acceptable for this example), so that the first adds from 1 to 40.000.000, the second from 40.000.001 to 80.000.000, the third from 80.000.001 to 120.000.000 and the fourth from 120.000.001 to 160.000.000. The following commands show one possibility. We consider that the system has the directory /home shared by NFS and that the user (nteum) who will execute the script has configured .rhosts adequately so that it is possible to access their account without the password. In addition, if tcpd has been activated in /etc/inetd.conf in the rsh line, there must be the corresponding file in /etc/hosts.allow, which would allow us to access the four machines in the cluster:

 	

 mkfifo out

 	Creates a fifo queue in /home/nteum
	

 ./distr.sh & time cat salida | awk '{total + = $1 } \
END printf "%lf", total}'

	 	Executes the command distr.sh; the results are collected and added whilst the execution time is measured

 The shell script distr.sh can be something like:

 rsh node1 /home/nteum/sumdis 1 40000000 > /home/nteum/out < /dev/null &

rsh node2 /home/nteum/sumdis 40000001 80000000 > /home/nteum/out < /dev/null &

rsh node3 /home/nteum/sumdis 80000001 120000000 > /home/nteum/out < /dev/null &

rsh node4 /home/nteum/sumdis 120000001 160000000 > /home/nteum/out < /dev/null &

 We can observe that the time is significantly reduced (by a factor of approximately 4) and not exactly lineally, but almost. Obviously, this example is very simple and is only used for demonstrative purposes. The programmers use libraries that allow them to set the execution time, the creation and communication of processes in a distributed system (such as PVM and MPI).

 How should we program to take advantage of concurrent computing?

 There are various ways of expressing the concurrency in a program. The most common two are:

 1) Using threads (or processes).

 2) Using processes in different processors that communicate through messages (MPS, message passing system).

 Both methods can be implemented on different hardware configurations (share memory or messages) but MPS systems can involve latency and speed problems with the messages on the network, which can be a negative factor. However, with the advances in network technology, these systems have grown in popularity (and in number). A message is extremely simple:

	send(destination,
 msg)
	recv(origin,
 msg)

 The most common APIs today are PVM and MPI and, in addition, they do not limit the possibility of using threads (even if it is at a local level) or of having concurrent processing and in/out. On the other hand, on a machine with shared memory (SHM) it is only possible to use threads and there is the severe problem of scalability, given that all the processors use the same memory and the number of processors in the system is limited by the memory's bandwidth.

 To summarise, we can conclude that:

 1) Proliferation of multitask (multi-user) machines connected through a network with distributed services (NFS and NIS YP).

 2) They are heterogeneous systems with networked operating systems (NOS) that offer a series of distributed and remote services.

 3) Distributed applications can be programmed at different levels:

 a)	Using a client-server model and programming at low-level (sockets).

 b)	The same model but with a "high-level" API (PVM, MPI).

 c)	Using other programming models such as programming oriented to distributed objects (RMI, CORBA, Agents...).

 Parallel virtual machine (PVM)

 PVM [Proe] is an API that makes it possible to generate, from the perspective of the application, a dynamic cluster of computers, which constitutes a virtual machine (VM). The tasks can be created dynamically (spawned) and/or eliminated (killed) and any PVM task can send a message to another. There is no limit to the size or number of messages (according to the specifications, although there may be hardware/operating system combinations that result in limitations on message size) and the model supports fault tolerance, resource control, processes control, heterogeneity in the networks and in the hosts.

 The system (VM) has tools for controlling the resources (adding or deleting hosts from the virtual machine), processes control (dynamic creation/elimination of processes), different communication models (blocking send, blocking/nonblocking receive, multicast), dynamic task groups (a task can be attached or removed from a group dynamically) and fault tolerance (the VM detects the fault and it can be reconfigured).

 The PVM structure is based, on the one hand, on the daemon (pvm3d) that resides in each machine and is interconnected using UDP, and, on the other hand, the PVM library (libpvm3.a), which contains all the routines for sending/receiving messages, creating/eliminating processes, groups, synchronisation etc. which will use the distributed application.

 PVM has a console (pvm) that makes it possible to start up the daemon, create the VM, execute applications etc. It is advisable to install the software from the distribution, given that the compilation requires a certain amount of 'dedication'. To install PVM on Debian, for example, we must include two packages (minimum): pvm and pvm-dev (the pvm console and utilities are in the first and the libraries, header and the rest of the compiling tools are in the second). If we only need the library because we already have the application, we can install only the libpvm3 package).

 To create a parallel/distributed application in PVM, we can start with the standard version or look at the physical structure of the problem and determine which parts can be concurrent (independent). The concurrent parts will be candidates for being rewritten as parallel code. In addition, we must consider whether it is possible to replace the algebraic functions with their paralleled versions (for example, ScaLapack, Scalable Linear Algebra Package, available in Debian as scalapack-pvm | mpich-test | dev, scalapack1-pvm | mpich depending on whether it is PVM or MPI). It is also convenient to find out whether there is any similar parallel application (http://www.epm.ornl.gov/pvm) that might guide us as to the construction method of the parallel application.

 Parallelising a program is not an easy task, as we have to take into account Amdahl's law.

 Important

 Amdahl's law states that speedup is limited by the fraction of code (f) that can be paralleled: speedup = 1/(1-f).

 This law implies that a sequential application f = 0 and the speedup = 1, with all the parallel code f = 1 and speedup= infinite (!), with possible values, 90% of the parallel code means a speedup = 10 but with f = 0.99, speedup = 100. This limitation can be avoided with scalable algorithms and different application models:

 Example 11.3. Note

 Amdahl's law

 speedup = 1/(1-f)

 f is the fraction of parallel code

 1) Master-worker: the master starts up all the workers and coordinates the work and in/out.

 2) Single process multiple data (SPMD): the same program that executes with different sets of data.

 3) Functional: various programs that perform a different function in the application.

 With the pvm console and with the add command we can configure the VM whilst adding all the nodes. In each of these nodes, there must be the directory ~/pvm3/bin/LINUX, with the binaries of the application. The variables PVM_ROOT = Directory must be declared, where the lib/LINUX/libpvm3.a is and PVM_ARCH=LINUX, which can be placed, for example, in file /.cshrc. The default shell of the user (generally a NIS user or, if not, the same user must be in each machine with the same password) should be csh (if we use rsh as a means of remote execution) and the file /.rhosts must be configured to provide access to each node without the password. The PVM package incorporates an rsh-pvm that can be found in /usr/lib/pvm3/bin as an rsh specifically made for PVM (see the documentation), as there are some distributions that do not include it, for security reasons. It is advisable to configure, as we have shown, the ssh with the public keys of the server in .ssh/authorized_keys of the directory of each user.

 As an example of PVM programming, we show a program of the server-client type, where the server creates the child nodes, sends the data, these nodes circulate the data a determined number of times between the child nodes (the first node on the left receives a piece of data, processes it and sends it to the one on the right), whilst the parent nodes waits for each child node to finish.

 Example 11.4. Example of PVM: master.c

 To compile in Debian:

gcc -O -I/usr/share/pvm3/include/ -L/usr/share/pvm3/lib/LINUX -o master master.c -lpvm3

The directories in -I and in -L must be where the includes pvm3.h and libpvm* are located, respectively.

 Execution:

 1) execute the pvmd daemon with pvm

 2) execute add to add the nodes (this command can be skipped if we only have one node

 3) execute quit (we leave pvm but it continues to execute)

 4) we execute master

 Example 11.5. Note

 Compiling PVM:

 gcc -O -I/usr/include/ -o

output output.c -lpvm3

 #include <stdio.h>
#include "pvm3.h"
#define SLAVENAME "/home/nteum/pvm3/client"
main() {
 int mytid, tids[20], n, nproc, numt, i, who, msgtype, loops;
 float data[10]; int n_times;

 if(pvm_parent() ==PvmNoParent){
 /*Return if this is the parent or child process */
 loops = 1;
 printf("\n How many children (120)? ");
 scanf("%d", &nproc);
 printf("\n How many child-child communication loops (1 - 5000)? ");
 scanf("%d", &loops); }

 /*Redirects the in/out of the children to the parent */ 		
 pvm_catchout(stdout);

 /*Creates the children */
 numt = pvm_spawn(SLAVENAME, (char**)0, 0, "", nproc, tids);
 /*Starts up a new process, 1st: executable child, 2nd: argv, 3rd :options,
 4th :where, 5th :N.º copies, 6th :matrix of id*/
 printf("Result of Spawn: %d \n", numt);

 /*Has it managed?*/
 if(numt < nproc){
 Printf("Error creating the children. Error code:\n");
 for(i = numt ; i<nproc ; i++) {
 printf("Tid %d %d\n",i,tids[i]); }
 for(i = 0 ; i<numt ; i++){
 pvm_kill(tids[i]); } 	/*Kill the processes with id in tids*/
 pvm_exit();
 exit(); /*Finish*/
 }

 /*Start up parent program, initialising the data */
 n = 10;
 for(i = 0 ; i<n ; i++){
 data[i] = 2.0;}
 /*Broadcast with initial data to slaves*/
 pvm_initsend(PvmDataDefault);.
 /*Delete the buffer and specify message encoding*/
 pvm_pkint(&loops, 1, 1);
 /*Package data in the buffer, 2nd N.º, 3*:stride*/
 pvm_pkint(&nproc, 1, 1);
 pvm_pkint(tids, nproc, 1);
 pvm_pkint(&n, 1, 1);
 pvm_pkfloat(data, n, 1);
 pvm_mcast(tids, nproc, 0);
 /*Multicast in the buffer to the tids and wait for the result from the children*/
 msgtype = 5;
 for(i = 0 ; i < nproc ; i++){
 pvm_recv(-1, msgtype);
 /*Receive a message, -1 :of any, 2nd:tag of msg*/
 pvm_upkint(&who, 1, 1);
 /*Unpackage*/
 printf("Finished %d\n",who);
 }
 pvm_exit();
 }

 Example 11.6. Example of PVM: client.c

 To compile in Debian:

gcc -O -I/usr/share/pvm3/include/ -L/usr/share/pvm3/lib/LINUX -or client client.c -lpvm3

The directories in -I and in -L must be where the included pvm3.h and libpvm* are located, respectively.

 Execution:

This is not necessary as the master will start them up, but the client must be in /home/nteum/pvm3

 #include <stdio.h>
#include "pvm3.h"

main() {
	 int mytid;	/*Mi task id*/
	 int tids[20];	/*Task ids*/
	 int n, me, i, nproc, master, msgtype, loops; float data[10];
	 long result[4]; float work();
	 mytid = pvm_mytid(); msgtype = 0;
	
	 pvm_recv(-1, msgtype);
	 pvm_upkint(&loops, 1, 1);
	 pvm_upkint(&nproc, 1, 1);
	 pvm_upkint(tids, nproc, 1);
	 pvm_upkint(&n, 1, 1);
	 pvm_upkfloat(data, n, 1);
	 /*Determines which child it is (0 -- nproc-1) */
	 for(i = 0; i < nproc ; i++)
	 if(mytid == tids[i]){ me = i; break; }
	
	 /*Processes and passes the data between neighbours*/
	 work (me, data, tids, nproc, loops);
	
	 /*Send the data to the master */
	 pvm_initsend(PvmDataDefault);
	 pvm_pkint(&me, 1, 1);
	 msgtype = 5;
	 master = pvm_parent(); 	/*Find out who created it */
	 pvm_send(master, msgtype);
	 pvm_exit();
	 }

float work(me, data, tids, nproc, loops)
 int me, *tids, nproc; float *data; {
		int i,j, dest; float psum = 0.0, sum = 0.1;
		for (j = 1; j <= loops; j++){
			pvm_initsend(PvmDataDefault);
			pvm_pkfloat(&sum, 1, 1);
			dest = me + 1;
			if(dest == nproc) dest = 0;
			pvm_send(tids[dest], 22);
			i = me - 1;
			if (me == 0) i = nproc-1;
			pvm_recv(tids[i], 22);
			pvm_upkfloat(&psum, 1, 1);
			}
	}

 The programmer is assisted by a graphic interface that is of great help (see following figure), which acts as a PVM console and monitor, called xpvm (in Debian XPVM, install package xpvm), which makes it possible to configure the VM, execute processes, visualise the interaction between tasks (communications), statuses, information etc.

 [image: Example of PVM: client.c]

 Message passing interface (MPI)

 The definition of the API of MPI [Prob, Proc] has been the work resulting from MPI Forum (MPIF), which is a consortium of more than 40 organisations. MPI has influences from different architectures, languages and works in the world of parallelism such as: WRC (Ibm), Intel NX/2, Express, nCUBE, Vertex, p4, Parmac and contributions from ZipCode, Chimp, PVM, Chamaleon, PICL. The main objective of MPIF was to design an API, without any particular relation with any compiler or library, so that efficient memory-to-memory copy communication, computing and concurrent communication and communication downloads would be possible, provided there is a communications coprocessor. In addition, it supports development in heterogeneous environments, with interface C and F77 (including C++, F90), where communication will be reliable and the faults resolved by the system. The API also needed an interface for different environments (PVM, NX, Express, p4...) and an implementation that was adaptable to different platforms with insignificant changes that did not interfere with the operating system (thread-safety). This API was designed especially for programmers that used message passing paradigm (MPP) in C and F77 to take advantage of the most important characteristic: portability. The MPP can be executed on multiprocessor machines, WS networks and even on machines with shared memory. The MPI1 version (the most widespread version) does not support the dynamic creation (spawn) of tasks, but MPI2 (which is developing at a growing rate) does.

 Many aspects have been designed to take advantage of the benefits of communications hardware on scalable parallel computers (SPC) and the standard has been mostly accepted by parallel and distributed hardware manufacturers (SGI, SUN, Cray, HPConvex, IBM, Parsystec...). There are freeware versions (mpich, for example) (which are completely compatible with the commercial implementations from the hardware manufacturers) and they include point-to-point communications, collective operations and process groups, communications and topology contexts, support for F77 and C and a control, administration and profiling environment. But there are also some unresolved points, such as: SHM operations, remote execution, program construction tools, debugging, control of threads, administration of tasks, concurrent in/out functions (most of these problems arising from a lack of tools are resolved in version 2 of API MPI2). The function in MPI1, as there is no dynamic process creation, is very simple, given that of so many processes as tasks that exist, autonomous and executing their own multiple instruction multiple data (MIMD) style code and communicating via MPI calls. The code may be sequential or multithread (concurrent) and MPI works in threadsafe mode, in other words, it is possible to use calls to MPI in concurrent threads, as the calls re-enter.

 To install MPI, it is recommended that you use the distribution, given that compiling it is extremely complex (due to the dependencies that it needs from other packages). Debian includes Mpich version 1.2.7-2 (Etch) in the mpich-bin package (the mpich one is obsolete) and also mpich-mpd-bin (version of a multipurpose daemon that includes support for scalable processes, management and control). The mpich-bin implements the MPI 1.2 standard and some parts of MPI 2 (such as, for example, parallel in/out). In addition, this same distribution includes another implementation of MPI called LAM (lam* packages and documentation in /usr/doc/lam-runtime/release.html). The two implementations are equivalent, from the perspective of MPI, but they are managed differently. All the information on Mpich can be found (after installing the mpich* packages) in /usr/share/doc/mpi (or in /usr/doc/mpi). Mpich needs rsh to execute in other machines, which means that we have to insert the user directory in a ~/.rhosts file with lines in the following format: host username to allow the username to enter the host without the password (the same as PVM). It should be remembered that we have to install the rshserver package on all the machines and if there is tcpd in /etc/inetd.conf on rsh.d, we must enable the hosts in /etc/hosts.allow. In addition, we must have mounted the directory of the user by NFS in all the machines and the /etc/mpich/machines.LINUX file must contain the hostname of all the machines that comprise the cluster (one machine per line, by default, appears as localhost). In addition, the user must have the Csh as the shell by default.

 On Debian, we can install the update-cluster package to help with the administration. The installation of Mpich on Debian uses ssh instead of rsh for security reasons, although there is a link of rsh =>ssh for compatibility. The only difference is that we must use the ssh authentication mechanisms for the connection without password through the corresponding files. Otherwise, for each process that executes, we will have to enter the password before execution. To allow the connection between machines, with ssh, without the password, we must follow the procedure mentioned in the preceding section. To check it, we can run ssh localhost and then we should be able to log in without the password. Bear in mind that if we install Mpich and LAM-MPI, the mpirun of Mpich will be called mpirun.mpich and the mpirun will be that of LAM-MPI. It is important to remember that mpirun of LAM will use the lamboot daemon to form the distributed topology of the VM.

 The lamboot daemon has been designed so that users can execute distributed programs without having root permissions (it also makes it possible to execute programs in a VM without calls to MPI). For this reason, to execute mpirun, we will have to do it as a user other than the root and execute lamboot beforehand. lamboot uses a configuration file in /etc/lam for the default definition of the nodes (see bhost*); please consult the documentation for more information (http://www.lam-mpi.org/). [Lam]

 To compile MMPI programs, we can use the mpicc command (for example, mpicc -o test test.c), which accepts all the options of gcc although it is advisable to use (with modifications) some of the makefiles that are located in the /usr/doc/mpich/examples file. It is also possible to use mpireconfig Makefile, that uses the Makefile.in file as an entry to generate the makefile and is much easier to modify. After, we can run:

 mpirun -np 8 programme

 or:

 mpirun.mpich -np 8 programme

 where np is the number of processes or processors in which the program will execute (8, in this case). We can put in the number we like, as Mpich will try to distribute the processes in a balanced manner better between all the machines of /etc/mpich/machines.LINUX. If there are more processes than processors, Mpich will use the swap characteristics of GNU/Linux to simulate parallel execution. In Debian and in the directory /usr/doc/mpich-doc (a link to /usr/share/doc/mpich-doc), we can find all the documentation in different formats (commands, API of MPI etc.).

 To compile MPI: mpicc -O -o output output.c

 Execute Mpich: mpirun.mpich -np Nº_processes output

 We will now see two examples (which are included in the distribution of Mpich 1.2.x in directory /usr/doc/mpich/examples). Srtest is a simple program for establishing communications between point-to-point processes and cpi calculates the value of Pi in distributed form (through integration).

 Example 11.7. Point-to-point communications: srtest.c

 For compiling: mpicc -O -o srtest srtest.c

Execution of Mpich: mpirun.mpich -np N.º_processes srtest (will ask for the password [N.º processes - 1] times if we do not have direct access through ssh).

Execution of LAM: mpirun -np N.º_processes srtest (must be a user other than the root)

 #include "mpi.h"
#include <stdio.h>
#define BUFLEN 512
int main(int argc, char *argv[]) {
 int myid, numprocs, next, namelen;
 char buffer[BUFLEN], processor_name[MPI_MAX_PROCESSOR_NAME]; MPI_Status status;
 MPI_Init(&argc,&argv);
 /* Must be placed before other MPI calls, always */ 		
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 /*Integrates the process in a communications group*/ 		
 MPI_Get_processor_name(processor_name,&namelen);
 /*Obtains the name of the processor*/
 fprintf(stderr,"Process %d on %s\n", myid, processor_name);
 strcpy(buffer,"Hello People");
 if (myid ==numprocs1) next = 0;
 else next = myid+1;
 if (myid ==0) { /*If it is the initial, send string of buffer*/.
 printf("%d Send '%s' \n",myid,buffer);
 MPI_Send(buffer, strlen(buffer)+1, MPI_CHAR, next, 99,
 MPI_COMM_WORLD);
 /*Blocking Send, 1 or :buffer, 2 or :size, 3 or :type, 4 or :destination, 5
 or :tag, 6 or :context*/
 /*MPI_Send(buffer, strlen(buffer)+1, MPI_CHAR,
 MPI_PROC_NULL, 299,MPI_COMM_WORLD);*/
 printf("%d receiving \n",myid);
 /* Blocking Recv, 1 o :buffer, 2 or :size, 3 or :type, 4 or :source, 5
 or :tag, 6 or :context, 7 or :status*/
 MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_ANY_SOURCE, 99, MPI_COMM_WORLD,&status);
 printf("%d received '%s' \n",myid,buffer) }
 else {
 printf("%d receiving \n",myid);
 MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_ANY_SOURCE, 99, MPI_COMM_WORLD,status);
 /*MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_PROC_NULL, 299,MPI_COMM_WORLD,&status);*/
 printf("%d received '%s' \n",myid,buffer);
 MPI_Send(buffer, strlen(buffer)+1, MPI_CHAR, next, 99,
 MPI_COMM_WORLD);
 printf("%d sent '%s' \n",myid,buffer);}
 MPI_Barrier(MPI_COMM_WORLD); /*Synchronises all the processes*/ MPI_Finalize();
 /*Frees up the resources and ends*/ return (0);
 }

 Example 11.8. Calculation of distributed PI: cpi.c

 For compiling: mpicc O or cpi cpi.c.

Execution of Mpich: mpirun.mpich -np N.º processes cpi (will ask for the password (N.° processes - 1) times if we do not have direct access through ssh).

 Execution of LAM: mpirun -np N.º processes cpi (must be a user other than root).

 #include "mpi.h"
#include <stdio.h>
#include <math.h>
double f(double);
double f(double a) { return (4.0 / (1.0 + a*a)); }
int main(int argc, char *argv[]) {
 int done = 0, n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;
 double startwtime = 0.0, endwtime;
 int namelen;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
		
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 /*Indicates the number of processes in the group*/
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 /*Id of the process*/ MPI_Get_processor_name(processor_name,&namelen);
 /*Name of the process*/
 fprintf(stderr,"Process %d on %s\n", myid, processor_name);
 n = 0;
 while (!done) {
 if (myid ==0) { /*If it is the first...*/
 if (n ==0) n = 100; else n = 0;
 startwtime = MPI_Wtime();} /* Time Clock */
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); /*Broadcast to the rest*/
 /*Send from 4th arg. to all
 the processes of the group. All others that are not 0
 will copy the buffer from 4 or arg -process 0-*/ /*1.º:buffer,
 2nd :size, 3rd :type, 5th :group */
 if (n == 0) done = 1; else {
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i + = numprocs) {
 x = h * ((double)i - 0.5); sum + = f(x); }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 /* Combines the elements of the Send Buffer of each process of the
 group using the operation MPI_SUM and returns the result in
 the Recv Buffer. It must be called by all the processes of the
 group using the same arguments*/ /*1st :sendbuffer, 2nd
 :recvbuffer, 3rd :size, 4th :typo, 5th :oper, 6th :root, 7th
 :context*/
 if (myid == 0){ /*Only the P0 prints the result*/
 printf("Pi is approximately %.16f, the error is %.16f\n", pi, fabs(pi - PI25DT));
 endwtime = MPI_Wtime();
 printf("Execution time = %f\n", endwtime-startwtime); }
 }
 }
 MPI_Finalize(); /*Free up resources and finish*/
 return 0;
}

 As XPVM exists in PVM, in MPI there is an analogous application (more sophisticated) called XMPI (xmpi in Debian). It is also possible to install a library, libxmpi3, which implements the XMPI protocol to graphically analyse MPI programs with more details than offered in xmpi. The following figure shows some of the possible graphics in xmpi.

 [image: Calculation of distributed PI: cpi.c]

Logs analysis

 By observing the log files [Ano99][Fri02], we can quickly get an idea of the global state of the system, as well as the latest events, and detect any irregular intrusions (or intrusion attempts). But it should also be remembered that, if there really has been an intrusion, the logs may have been cleaned or falsified. Most of the log files will be in the /var/log directory.

 Many of the services may have their own logs, which are normally established during configuration (through the corresponding configuration file). Most of them usually use the log facilities incorporated in the Syslog through the Syslogd daemon. The configuration will be in /etc/syslog.conf. This configuration is usually established according to the message levels: there are different types of message according to their importance. Normally, levels such as debug, info, err, notice, warning, err, crit, alert, emerg, appear, in which the order of importance of the messages would be more or less as follows (from least to most important). Normally, most of the messages are sent to the /var/log/messages log, but the system can be set so that each message type goes to different files and it is also possible to identify who has created them; typically, the kernel, mail, news, the authentication system etc.

 Consequently, it is appropriate to examine (or in any case adapt) the configuration of Syslog so as to determine the logs in which we can find / generate the information. Another important point is to control its growth, as, depending on which are active and the operations (and services) that are performed in the system, the logs can grow very quickly. In Debian and Fedora, this can be controlled through logrotated, a daemon that regularly makes copies and compresses the oldest logs; it is possible to find the general configuration in /etc/logrotate.conf, although some applications set specific configurations that can be found in the /etc/logrotate.d directory.

 In the following points, we will discuss some of the log files that should be taken into account (perhaps the most frequently used):

 a)	/var/log/messages: is the default log file of the Syslogd daemon, but we would have to check its configuration, in case it has been moved to another place or there are several of them. This file contains a wide range of messages from various origins (different daemons, services or the same kernel); anything that looks irregular must be verified. If there has been an intrusion, the date of the intrusion and related files should be checked.

 b)	/var/log/utmp: this file contains binary information for each user that is currently active. It is useful to determine who is logged in the system. The who command uses this file to provide this information.

 c)	/var/log/wtmp: each time that a user logs in or out of the system, or the machine reboots, an entry is saved in this file. This is a binary file from which the last command obtains the information; the file records which users logged in or out of the system and when and where the connection was made. It can be useful for finding out where (in which accounts) the intrusion started and detect the use of suspicious accounts. There is also a variation in the command called lastb, which lists the login attempts that were not correctly validated and the /var/log/btmp file is used (you may have to create it if it doesn't exist). These same authentication faults can also be sent to log auth.log. In a similar manner, the lastlog command uses another file, /var/loglastlog, to verify which was the last connection of each of the users.

 d)	/var/log/secure: they are usually used in Fedora for sending the tcp wrapper messages (or firewalls). Each time that a connection is established to an inetd service, or, in the case of Red Hat 9, to the xinetd service (with its own security), a log message is added to this file. We can search for intrusion attempts in services that are not usually used or in unfamiliar machines that try to connect.

 In the logs system, another thing that should be checked is that the directory logs in /var/log can only be writable by the root (or the daemons associated to the services). Otherwise, any attacker could falsify the information in the logs. Nevertheless, if attackers manage to access the root, they may often delete all their tracks.

Metacomputers, grid computing

 The computing requirements that are needed for certain applications are so large that they require thousands of hours to be able to execute in cluster environments. Such applications have promoted the creation of virtual computers on networks, metacomputers or grid computers. This technology has made it possible to connect execution environments, high-speed networks, databases, instruments etc., distributed in different geographic locations. This makes it possible to achieve a processing power that would not be economically viable in any other way with excellent results. Examples of their application are experiments such as the I-WAY networking (which connects supercomputers from 17 different places) in North America, or DataGrid, CrossGrid in Europa or IrisGrid in España. These metacomputers or grid computers have a lot in common with parallel and distributed systems (SPD), but they are also different in certain important aspects. Although they are connected through networks, the networks can have different characteristics, the service cannot be guaranteed and they will be located in different domains. The programming model and interfaces must be radically different (in respect of the model of distributed systems) and adequate for high performance computing. As with SPD, the metacomputing applications require a communications plan to provide the required performance levels; but given their dynamic nature, new tools and techniques are needed. In other words, whilst metacomputing can be formed with the base of the SPDs, it is necessary to create new tools, mechanisms and techniques for these. [Fos]

 Different computing architectures

 If we only consider the calculative power aspect, we can see that there are various solutions depending on the size and characteristics of the problem. Firstly, we could think of a supercomputer (server) but these have problems such as the lack of scalability, costly equipment and maintenance, peak computing (a lot of time resources are not taken advantage of) and reliability problems. The economic alternative is a set of computers interconnected by a high performance network (Fast Ethernet – LAN – or Myrinet – SAN) which would form a cluster of stations dedicated to parallel/distributed computing (SPD) with a very high performance level (3 to 15 times cost/performance ratio). But these systems have inconveniences such as the high cost of communications, maintenance, programming model etc. However, it is an excellent solution for medium range or high time computing (HTC). Another interesting concept is intranet computing, which means using the equipment of a local network (for example, a C class network) to execute sequential or parallel jobs with assistance of an administration and load tool; In other words, it is a step down from a cluster and it permits the exploitation of the computational power in a large local network with the ensuing advantages, as we increase the effectiveness of the use of resources (low cost CPU cycles), improve the scalability and the administration is not too complex. For these types of solutions, there is software such as Sun Grid Engine by Sun Microsystems [Sun], Condor by the University of Wisconsin (both free) [Uni] or LSF by Platform Computing (commercial) [Pla].

 The option of intranet computing presents some inconveniences such as the impossibility of managing resources outside the domain of administration. Some of the abovementioned tools (Condor, LSF or SGE) permit cooperation between different sub-nodes of the system, but all of them must have the same administrative structure, the same security policies and the same philosophy of resource management. Although this is a step forward in terms of computational power at low-cost, they only manage the CPU and not the data shared between the sub-nodes. Besides, the protocols and interfaces are proprietary and they are not based on an open standard, it is not possible to amortise the resources when they are not fully in use and neither can we share resources with other organisations. [Beo, Ext, Die]

 The growth of computers between 1986 and 2000 has multiplied by 500 and the networks by 340,000, but forecasts would indicate that, between 2001 and 2010, computers will only multiply by 60 and networks by 4,000. This indicates the standard of the next architecture for HPC: computing distributed by Internet or grid computing (GC) or metacomputing.

 Grid computing is a new emerging technology, the objective of which is to share resources by Internet in a uniform, transparent, secure, efficient and reliable manner. This technology is complementary to the preceding technologies, in that it permits the interconnection of resources in different administration domains whilst respecting their internal security policies and their resource management software on the intranet. According to one of its precursors, Ian Foster, in his article "What is the Grid? A Three Point Checklist" (2002), a grid is a system that:

 1) coordinates resources that are not subject to centralised control,

 2) using standard, open, general-purpose protocols and interfaces,

 3) to deliver non-trivial qualities of service.

 Among the advantages that this new technology provides, we might mention the lease of resources, the amortisation of own resources, a great amount of power without having to invest in resources and installations, collaboration/sharing between institutions and virtual organisations etc.

 The following figure provides a view of all these concepts. [Llo]

 [image: Different computing architectures]

 Globus

 The Globus Project[Gloa, Glob] is one of the most emblematic in this sense, as it is the precursor in the development of a toolkit for metacomputing or grid computing and it provides considerable advances in the areas of communication, information, location and planning of resources, authentication and access to data. In other words, Globus makes it possible to share resources located in different administration domains, with different security and resource management policies and it is formed by a middleware software package that includes a set of libraries, services and API.

 The globus tool (Globus toolkit) is formed by a set of modules with well-defined interfaces for interacting with other modules and/or services. The functions of these modules are as follows:

	
 Location and allocation of resources; this allows us to tell the applications what the requirements are and the resources that we need, given that an application cannot know where the resources on which it will execute are located.

	
 Communications; this provides the basic communication mechanisms, which represent an important aspect of the system, as they have to allow various methods for the applications to use them efficiently. These include message passing, remote procedure calls (RPC), shared distributed memory, (stream-based) dataflow and multicast.

	

 Unified resource information service provides a uniform mechanism for obtaining information in real time as to the status and structure of the meta-system where the applications are executing.

	
 Authentication interface; these are the basic authentication mechanisms for validating the identity of the users and resources. The module generates the upper layer that will then use the local services for accessing the data and resources of the system.

	
 Creation and execution of processes; this is used to start the execution of tasks that have been allocated to the resources, transmitting the execution parameters and controlling them until execution is completed.

	
 Data access; this has to provide high-speed access to the data saved in the files. For DB, it uses distributed access technology or through CORBA and it is able to achieve optimal performance levels when it accesses parallel file systems or in/out devices through the network, such as high performance storage system (HPSS).

 The internal structure of Globus can be seen in the following figure (http://www.globus.org/toolkit/about.html).

 [image: Globus]

 Software, installation and administration of Globus

 The 'The Globus Alliance' website is http://www.globus.org [Gloa]. Here we can find source code and all the documents that we might need to transform our intranet into a part of a grid. Being part of a grid means agreeing to and implementing the policies of all the institutions and companies that are part of that grid. There are various different initiatives based on Globus in Spain. One of these is IrisGrid [Llo], which we can join if we wish to take advantage of the benefits of this technology. For more information, see: http://www.rediris.es/irisgrid/.

 The first step for setting up Globus is to obtain the software (currently Globus Toolkit 4) called GT4. This software implements the services with a combination of C and Java (the C components can only be executed in UNIX GNU/Linux platforms, generally), which is why the software is divided into the services that it offers. Certain packages, or others, should be installed, depending on the system that we wish to set up.

 A quick installation guide, with the download, system requirements and certificates can be found at http://www.globus.org/toolkit/docs/4.0/admin/docbook/quickstart.html. To summarise, the following steps must be taken:

	
 Pre-requisites: verify the software and versions (zlib, j2se, disable gcj, apache, C/C++, tar, make, sed, perl, sudo, postgres, iodbc)

	
 Create user, download and compile GT4

	
 Start up system security (certificates)

	
 Start up GridFTP

	
 Start up the Webservices Container

	
 Configure RFT (Reliable File Transfer)

	
 Start up WS GRAM (job management)

	
 Start up the second machine

	
 Start up the Index Service hierarchy

	
 Start up the cluster

	
 Establish Cross-CA Trust

 As you will observe, installing and setting up GT4 is not an easy task, but it is justified if we wish to incorporate a cluster into a grid or if we wish to perform tests (we recommend an extra dose of enthusiasm and patience) to appreciate the real power of GT4. For detailed information on installing GT4, please see:

 http://www.globus.org/toolkit/docs/4.0/admin/docbook/

The profile of the systems administrator

 Large companies and organisations rely more and more on their IT resources and on how these are administered and adapted to the required tasks. The huge increase in distributed networks, with server and client machines, has created a large demand for a new job in the marketplace: the so-called systems administrator.

 A systems administrator is responsible for a large number of important tasks. The best systems administrators tend to have a fairly general practical and theoretical background. They can perform tasks such as: cabling installations or repairs; installing operating systems or applications software; correcting systems problems and errors with both hardware and software; training users; offering tricks or techniques for improving productivity in areas ranging from word processing applications to complex CAD or simulator systems; financially appraising purchases of hardware and software equipment; automating a large number of shared tasks, and increasing the organisation's overall work performance.

 The administrator can be considered the employee who helps the organisation to make the most of the available resources, so that the entire organisation can improve.

 The relationship with the organisation's end users can be established in several ways: either through training users or by offering direct assistance if problems should arise. The administrator is the person responsible for ensuring that the technologies employed by users function properly, meaning that the systems satisfy users' expectations and do the tasks they need to fulfil.

 Years ago, and even nowadays, many companies and organisations had no clear vision of the system administrator's role. When business computing was in its early days (in the eighties and nineties), the administrator was seen as the person who understood computers (the "guru") responsible for installing machines and monitoring or repairing them in case there were any problems. Normally, the job was filled by a versatile computer technician responsible for solving problems as and when they appeared. There was no clear-cut profile for the job because extensive knowledge was not required, just basic knowledge of a dozen (at most) applications (the word processor, spreadsheet, database etc.), and some basic hardware knowledge was enough for day to day tasks. Therefore, anyone in the know who understood the issue could do the job, meaning that usually administrators were not traditional computer technicians and often knowledge was even communicated orally between an existing or older administrator and a trainee.

 This situation reflected to some extent the prehistory of systems administration (although there are still people who think that it is basically the same job). Nowadays, in the age of Internet and distributed servers, a systems administrator is a professional (employed full-time exclusively for this purpose) who offers services in the field of systems software and hardware. The systems administrator has to execute several tasks destined for multiple IT systems, mostly heterogeneous, with a view to making them operative for a number of tasks.

 Currently, systems administrators need general knowledge (theoretical and practical) in a diversity of fields, from network technologies, to operating systems, diverse applications, basic programming in a large number of programming languages, extensive hardware knowledge – regarding the computer itself as well as peripherals – Internet technologies, web-page design, database management etc. And normally the profile is sought to correspond to the company's area of work, chemistry, physics, mathematics etc. Therefore, it is no surprise that any medium to large company has turned away from employing the available dogsbody towards employing a small group of professionals with extensive knowledge, most with a university degree, assigned to different tasks within the organisation.

 Important

 The systems administrator must be capable of mastering a broad range of technologies in order to adapt to a variety of tasks that can arise within an organisation.

 Because of the large amount of knowledge required, unsurprisingly there are several sub-profiles for a systems administrator. In a large organisation it is common to find different operating systems administrators (UNIX, Mac, or Windows): database administrator, backup copies administrator, IT security administrator, user help administrators etc.

 In a smaller organisation, all or some of the tasks may be allocated to one or a few administrators. The UNIX systems (or GNU/Linux) administrators would be a part of these (unless there is one administrator responsible for all tasks). Normally, the administrator's working platform is UNIX (or GNU/Linux in our case), which requires enough specific elements to make this job unique. UNIX (and its variants) is an open and very powerful operating system and, like any software system, requires a certain level of adaptation, configuration and maintenance in the tasks for which it will be used. Configuring and maintaining an operating system is a serious job, and in the case of UNIX can become quite frustrating.

 Some important issues covered include the following:

 a) The fact that the system is very powerful also means that there is a lot of potential for adapting it (configuring it) for the tasks we need to do. We will have to evaluate what possibilities it can offer us and which are appropriate for our final objective.

 b) A clear example of an open system is GNU/Linux, which will offer us permanent updates, whether to correct system bugs or to incorporate new features. And, obviously, all of this has a considerable direct impact on the maintenance cost of administration tasks.

 c) Systems can be used for critical cost tasks, or in critical points of the organisation, where important failures that would slow down or impede the functioning of the organisation cannot be allowed.

 d) Networks are currently an important point (if not the most important), but it is also a very critical problems area, due both to its own distributed nature and to the system's complexity for finding, debugging and resolving problems that can arise.

 e) In the particular case of UNIX, and our GNU/Linux systems, the abundance of both different versions and distributions, adds more problems to their administration, because it is important to know what problems and differences each version and distribution has.

 In particular, system and network administration tasks tend to have different features, and sometimes they are handled separately (or by different administrators). Although we could also look at it as the two sides of the same job, with the system itself (machine and software) on the one hand, and the environment (network environment) where the system coexists, on the other.

 Usually, network administration is understood to mean managing the system as part of the network and refers to the nearby services or devices required for the machine to function in a network environment; it does not cover network devices such as switches, bridges or hubs or other network devices, but basic knowledge is essential in order to facilitate administration tasks.

 In this course, we will first deal with the local aspects of the system itself and secondly we will look at the tasks of administering a network and its services.

 We have already mentioned the problem of determining exactly what a systems administrator is, because in the IT job market it is not very clear. It was common to ask for systems administrators based on categories (established by companies) of programmer or software engineer, which are not entirely appropriate.

 A programmer is basically a producer of code; in this case, an administrator would not need to produce much, because it may be necessary for some tasks but not for others. Normally, it is desirable for an administrator to have more or less knowledge depending on the job category:

	
 Some qualification or university degree, preferably in IT, or in a field directly related to the company or organisation.

 The profile of a systems administrator tends to include computer science or enginnering studies or an education related to the organisation's sphere of activity together with proven experience in the field and broad knowledge of heterogeneous systems and network technologies.

	
 It is common to ask for 1 to 3 years of experience as an administrator (unless the job is as an assistant of an already existing administrator). Experience of 3 to 5 years may also be requested.

	
 Familiarity with or broad knowledge of network environments and services. TCP/IP protocols, ftp, telnet, ssh, http, nfs, nis, ldap services etc.

	
 Knowledge of script languages for prototyping tools or rapid task automation (for example, shell scripts, Perl, tcl, Python etc.) and programming experience in a broad range of languages (C, C++, Java, Assembler etc.).

	
 Experience in large applications development in any of these languages may be requested.

	
 Extensive knowledge of the IT market, for both hardware and software, in the event of having to evaluate purchases or install new systems or complete installations.

	
 Experience with more than one version of UNIX (or GNU/Linux systems), such as Solaris, AIX, AT&T System V, BSD etc.

	
 Experience of non-UNIX operating systems, complementary systems that may be found in the organisation: Windows 9x/NT/2000/XP/Vista, Mac OS, VMS, IBM systems etc.

	
 Solid knowledge of UNIX design and implementation, paging mechanisms, exchange, interprocess communication, controllers etc., for example, if administration tasks include optimising systems (tuning).

	
 Knowledge and experience in IT security: construction of firewalls, authentication systems, cryptography applications, file system security, security monitoring tools etc.

	
 Experience with databases, knowledge of SQL etc.

	
 Installation and repair of hardware and/or network cabling and devices.

File services (NFS)

 Important

 The NFS system allows a server to export a file system so that it can be used interactively from a client. The service consists of an nfsd server and a client (mountd) which can share a file system (or part of it) through the network.

	In Debian, installapt-get install nfs-common portmapfor the client, while the server needs:
	
 apt-get install nfs-kernel-server nfs-common portmap.

 The server (in Debian) starts through the nfscommon and nfs-kernel-server scripts in /etc/init.d (and the appropriate links in /etc/rcX.d).

 The server uses a file (/etc/exports) to manage the access and control of the file systems that will be accessed remotely. On the client, the root (or other user through sudo) can mount the remote system using the command:

 mount IPserver:remote-directory local_directory

 and as of that moment, the remote-directory will be seen within the local directory (which must exist before executing the mount). This task in the client can be automated using the automatic mount file (/etc/fstab) including a line; for example:

 pirulo.remix.com:/usr/local /pub nfs rsize=8192,wzise=8192,timeo=14

 This sentence indicates that the directory /usr/local of the host pirulo.remix.com will be mounted in the /pub local directory. The parameters rsize, wzise are the size of the reading and writing blocks, timeo is the RPC timeout (if these three values are not specified, the default values are taken).

 The /etc/exports file serves as ACL (access control list) of the file systems that can be exported to the clients. Every line contains a file system to be exported followed by the clients that can mount it, separated by blank spaces. Each client can have a set of options associated to it in order to modify the behaviour (see the exports man for a detailed list of the options). An example of this could be:

	# Example of /etc/exports
	/ /master(rw) trusty(rw,no_root_squash)
	/projects proj*.local.domain(rw)
	/usr *.local.domain(ro) @trusted(rw)
	/pub (ro,insecure,all_squash)
	/home 195.12.32.2(rw,no_root_squash) www.first.com(ro)
	/user 195.12.32.2/24(ro,insecure)
	

 The first line exports the entire file system (/) to master and trusty in read/write mode. Plus, for trusty there is no uid squashing (the root of the client will access as root the root files of the server, in other words, the two root are equivalent despite being from different machines; it is suited for machines without a disk). The second and third lines show examples of '*' and netgroups (indicated by @). The fourth line exports the /pub directory to any machine in the world, read-only, allows access to NFS clients that do not use a port reserved for NFS (option insecure) and everything is executed under the user nobody (option all squash). The fifth line specifies one client for its IP and the sixth the same but with a network mask (/24) and with options between brackets () and without any spaces. There can only be spaces between the enabled clients. It is important to bear in mind that there are 3 versions of NFS (V2, V3 and recently V4). The most common ones are V3 and in some installations V2. If from a V3 client we connect to a V2 server, this situation must be indicated with a parameter.

 Wiki server

 A wiki (from Hawaiian wiki wiki, "fast") is a collaborative website that can be edited by various users who can create, edit, delete or modify the content of a web page, in an easy, fast and interactive manner; these capabilities make wiki an effective tool for collaborative writing. Wiki technology allows web pages stored in a public server (the wiki pages) to be written in a collaborative fashion through a navigator, using simple notation for giving format, creating links etc., saving a log of changes that makes it possible to recover easily any prior status of the page. When someone edits a wiki page, its changes appear immediately on the web, without passing through any type of prior revision. Wiki can also refer to pages of hypertext, which can be visited and edited by anyone (definition of Wikipedia). Debian has its wiki in http://wiki.debian.org/ and FC in http://fedoraproject.org/wiki/ and both are based on Moin Moin (http://moinmoin.wikiwikiweb.de/). MoinMoin is a Python WikiClone that can rapidly initiate its own wiki; it just needs a web server and the installed Python language.

 In http://moinmoin.wikiwikiweb.de/MoinMoinPackages/DebianLinux we can find detailed instructions for installing Moin Moin on Debian, but, basically, it comes down to: 1) Installing apache2 and mod_python, 2) configuring Apache to note the code of MoinMoin, 3) installing the moinmoin package, 4) configuring MoinMoin and 5) restarting Apache. A configuration example:

 apt-get install python-moinmoin

mkdir /var/www/mywiki

cp -r /usr/share/moin/data /usr/share/moin/underlay \

/usr/share/moin/server/moin.cgi /var/www/mywiki

chown -R www-data:www-data /var/www/mywiki

chmod -R g+w /var/www/mywiki

	
 Configure apache2 by adding /etc/apache2/conf.d/wiki (or wherever the configuration file is):

Alias /wiki/ "/usr/share/moin/htdocs/"

	<Location /mywiki>
	 SetHandler python-program
	 PythonPath "['/var/www/mywiki','/etc/moin/']+sys.path"
	 PythonHandler MoinMoin.request::RequestModPy.run
	 PythonDebug On
	</Location>

	
 Restart apache2:

 /etc/init.d/apache2 reload

	
 Configure MoinMoin: Edit /etc/moin/farmconfig.py (multiple wikis)

	
 wikis =[
	("mywiki", r"^yoursite.com/mywiki/.*$"),
]

	
 we can also use (just one wiki):

	wikis = [
	("mywiki", r".*"),
]

	
 Also in /etc/moin/farmconfig.py remove the comment data_dir and data_underlay_dir (one for each wiki) and copy the file.

 cp /etc/moin/moinmaster.py /etc/moin/mywiki.py

	
 Then edit /etc/moin/mywiki.py and change:

	sitename = u'MyWiki'
	data_dir = '/var/www/mywiki/data'
	data_underlay_dir = '/var/www/mywiki/underlay'

 The Wiki will be installed on http://yoursite.com/mywiki/

Intrusion detection

 With intrusion detection systems [Hat01] (IDS) the aim is to take a step forward. Once we have been able to configure our security correctly, the next step will be to detect and actively prevent intrusions.

 Example 9.16. Note

 IDS systems allow us to detect on time intruders using our resources or exploring our systems in search of security failures.

 IDS systems create listening procedures and generate alerts when they detect suspicious situations, in other words, they look for the symptoms of potential security incidents.

 We have systems based on local information, for example, gathering information from the system logs, monitoring changes in the file system or in the configurations of typical services. Other systems are based on the network and verify that there is no strange behaviour, such as spoofing, with the falsification of known addresses; controlling suspicious traffic, potential service denial attacks, detecting excessive traffic towards particular services, controlling that there are no network interfaces in promiscuous mode (a symptom of sniffers or package capturers).

 Example 9.17. Examples

 Some examples of IDS tools: Logcheck (log verification), TripWire (system status through md5 sums applied to the files), AIDE (a free version of TripWire), Snort (IDS for verifying the status of an entire network).

Tutorial: configuring de kernel to the requirements of the user

 In this section we will have a look at a small interactive workshop for the process of updating and configuring the kernel in the two distributions used: Debian and Fedora.

 The first essential thing, before starting, is to know the current version of the kernel we have with uname -r, in order to determine which is the the next version that we want to update to or personalise. And the other is to have the means to boot our system in case of errors: the set of installation CDs, the floppy disc (or CD) for recovery (currently the distribution's first CD is normally used) or some Live CD distribution that allows us to access the machine's file system, in order to redo any configurations that may have caused problems. It is also essential to back up our data or important configurations.

 We will look at the following possibilities:

 1) Updating the distribution's kernel. Automatic case of Debian.

 2) Automatic update in Fedora.

 3) Adapting a generic kernel (Debian or Fedora). In this last case, the steps are basically the same as those presented in the section on configuration, but we will make a few more comments:

 Configuring the kernel in Debian

 In the case of the Debian distribution, the installation can also be done automatically, using the APT packages system. It can be done either from the command line or with graphic APT managers (synaptic, gnome-apt...).

 We are going to carry out the installation using the command line with apt-get, assuming that the access to the apt sources (above all to the Debian originals) is properly configured in the /etc/apt/sources.list file. Let's look at the steps:

 1) To update the list of packages.

 # apt-get update

 2) To list the packages associated with images of the kernel:

 # apt-cache search linux-image

 3) To select a version suitable for our architecture (generic, 386/486/686 for Intel, k6 or k7 for amd or in particular for 64Bits versions amd64, intel and amd or ia64, for Intel Itanium). The version is accompanied by kernel version, Debian revision of the kernel and architecture. For example: 2.6.21-4-k7, kernel for AMD Athlon, Debian revision 4 of the kernel 2.6.21.

 4) Check for the selected version that the extra accessory modules are available (with the same version number) With apt-cache we will search for whether there are other dynamic modules that could be interesting for our hardware, depending on the version of the kernel to be installed. Remember that, as we saw in the Debian way, there is also the module-assistant utility, which allows us to automate this process after compiling the kernel. If the necessary modules are not supported, this could prevent us from updating the kernel if we consider that the functioning of the problematic hardware is vital for the system.

 5) Search, if we also want to have the source code of the kernel, the Linux-source-version (only 2.6.21, that is, the principal numbers) and the corresponding kernel headers, in case we later want to make a personalised kernel: in this case, the corresponding generic kernel patched by Debian.

 6) Install what we have decided: if we want to compile from the sources or simply to have the code:

 # apt-get install linux-image-version
apt-get install xxxx-modules-version (if some modules are necessary)

 and

 # apt-get install linux-source-version-generic
apt-get install linux-headers-version

 7) Install the new kernel, for example in the lilo bootloader (check the boot utility used, some recent Debian versions use grubas boot loader), this is done automatically. If we are asked if the initrd is active, we will have to verify the lilo file (/etc/lilo.conf) and, in the lilo configuration of the new image, include the new line:

 initrd = /initrd.img-version (or /boot/initrd.img-version)

 once this is configured, we would have to have a a lilo of the mode (fragment), supposing that initrd.img and vmlinuz are links to the position of the files of the new kernel:

 default = Linux

image = /vmlinuz
			label = Linux
			initrd = /initrd.img
#		restricted
#		alias = 1
image = /vmlinuz.old
			label = LinuxOLD
			initrd = /initrd.img.old
#		restricted
#		alias = 2

 We have the first image by default, the other is the former kernel. Thus, from the lilo menu we can ask for one or the other or, simply by changing the default, we can recover the former. Whenever we make any changes in /etc/lilo.conf we should not forget to rewrite in the corresponding sector with the command /sbin/lilo or /sbin/lilo -v.

 Configuring the kernel in Fedora/Red Hat

 Updating the kernel in the Fedora/Red Hat distribution is totally automatic by means of its package management service or else by means of the graphic programs that the distribution includes for updating; for example, in business versions of Red Hat there is one called up2date. Normally, we will find it in the task bar or in the Fedora/Red Hat system tools menu (check the available utilities in tools/Administration menus, the currently available graphic tools are highly distribution version dependent).

 This updating program basically checks the packages of the current distribution against a Fedora/Red Hat database and offers the possibility of downloading the updated packages, including those of the kernel. This Red Hat service for businesses works via a service account and Red Hat offers it for payment. With this type of utilities the kernel is updated automatically.

 For example, in figure 10, we can see that once running, a new available version of the kernel has been detected, which we can select for downloading:

 [image: Configuring the kernel in Fedora/Red Hat]

 In Fedora we can either use the equivalent graphic tools or simply use yum directly, if we know that new kernels are available:

 # yum install kernel kernel-source

 Once downloaded, we proceed to install it, normally also as an automatic process, whether with grub or lilo as boot managers. In the case of grub, it is usually automatic and leaves a pair of options on the menu, one for the newest version and the other for the old one. For example, in this grub configuration (the file is in /boot/grub/grub.conf or else /boot/grub/menu.lst), we have two different kernels, with their respective version numbers.

 #file grub.conf
default = 1
timeout = 10
splashimage = (hd0,1)/boot/grub/splash.xpm.gz

 title Linux (2.6.20-2945)
root (hd0,1)
kernel /boot/vmlinuz-2.6.20-2945 ro root = LABEL = /
initrd /boot/initrd-2.6.20-18.9.img

 title LinuxOLD (2.6.20-2933)
root (hd0,1)
kernel /boot/vmlinuz-2.4.20-2933 ro root = LABEL = /
initrd /boot/initrd-2.4.20-2933.img

 Each configuration includes a title that appears during start up. The root or partition of the disc from where it boots, the directory where the file corresponding to the kernel is found and the corresponding initrd file.

 In the case of having lilo (by default grub is used) in the Fedora/Red Hat as manager, the system will also update it (file /etc/lilo.conf), but then we will have to rewrite the boot manually with the command /sbin/lilo.

 It is also important to mention that with the previous installation we had the possibility of downloading the sources of the kernel; these, once installed, are in/usr/src/linux-version and can be compiled and configured following the usual procedure as if it was a generic kernel. We should mention that the Red Hat company carries out a lot of work on the patches and corrections for the kernel (used after Fedora) and that its kernels are modifications to the generic standard with a fair number of additions, which means that it could be better to use Red Hat's own sources, unless we want a newer or more experimental kernel than the one supplied.

 Configuring a generic kernel

 Let's look at the general case of installing a kernel starting from its sources. Let's suppose that we have some sources already installed in /usr/src (or the corresponding prefix). Normally, we would have a Linux directory or linux-version or simply the version number. This will be the tree of the sources of the kernel.

 These sources can come from the distribution itself (or we may have downloaded them during a previous udpate), first it will be interesting to check whether they are the latest available, as we have already done before with Fedora or Debian. Or if we want to have the latest and generic versions, we can go to kernel.org and download the latest available version (better the stable one than the experimental ones), unless we are interested in the kernel's development. We download the file and in /usr/src (or another selected directory, even better) decompress the kernel sources. We can also search to see if there are patches for the kernel and apply them (as we have seen in section 4.4).

 Next, we will comment on the steps that will have to be carried out: we will do it briefly, as many of them have been mentioned before when working on the configuration and tailoring.

 Tip

 It would be advisable to reread section 3.4.3.

 1) Cleaning the directory of previous tests (where applicable):

 make clean mrproper

 2) Configuring the kernel with, for example: make menuconfig (or xconfig, gconfig or oldconfig). We saw this in section 4.3.

 [image: Configuring a generic kernel]

 4) Dependencies and cleaning of previous compilations:

 make dep

 5) Compiling and creating an image of the kernel: make bzImage. zImage would also be possible if the image was smaller, but bzImage is more normal, as it optimises the loading process and compression of larger kernels. On some ancient hardware it may not work and zImage may be necessary. The process can last from a few minutes to an hour on modern hardware and hours on older hardware. When it finishes, the image is found in: /usr/src/directory-sources/arch/i386/boot.

 6) Now we can compile the modules with make modules. Until now we have not changed anything in our system. Now we have to proceed to the installation.

 7) In the case of the modules, if we try an older version of the kernel (branch 2.2 or the first ones of 2.4), we will have to be careful, since some used to overwrite the old ones (in the last 2.4.x or 2.6.x it is no longer like this).

 But we will also need to be careful if we are compiling a version that is the same (exact numbering) as the one we have (the modules are overwritten), it is better to back up the modules:

 	cd /lib/modules
	tar -cvzf old_modules.tgz versionkernel-old/

 This way we have a version in .tgz that we can recover later if there is any problem And, finally, we can install the modules with:

 	make modules install

 8) Now we can move on to installing the kernel, for example with:

 # cd /usr/src/directory-sources/arch/i386/boot
cp bzImage /boot/vmlinuz-versionkernel
cp System.map /boot/System.map-versionkernel
ln -s /boot/vmlinuz-versionkernel /boot/vmlinuz
ln -s /boot/System.map-versionkernel /boot/System.map

 This way we store the symbols file of the kernel (System.map) and the image of the kernel.

 9) 	Now all we have to do is put the required configuration in the configuration file of the boot manager, whether lilo (/etc/lilo.conf) or grub (/boot/grub/grub.conf) depending on the configurations we already saw with Fedora or Debian. And rememeber, in the case of lilo, that we will need to update the configuration again with /sbin/lilo or /sbin/lilo -v.

 10) Restart the machine and observe the results (if all has gone well).

GNU/Linux distributions

 When speaking about the origins of GNU/Linux, we have seen that there is no clearly defined unique operating system. On the one hand, there are three main software elements that make up a GNU/Linux system:

 1) The Linux kernel: as we have seen, the kernel is just the central part of the system. But without the utility applications, shells, compilers, editors etc. we could not have a complete system.

 2) GNU applications: Linux's development was complemented by the FSF's existing software under the GNU project, which provided editors (such as emacs), a compiler (gcc) and various utilities.

 3) Third party software: normally open source. Additionally, any GNU/Linux system incorporates third party software which makes it possible to add a number of extensively used applications, whether the graphics system itself X Windows, servers such as Apache for web, navigators etc. At the same time, it may be customary to include some proprietary software, depending on to what extent the distribution's creators want the software to be free.

 Because most of the software is open source or free, whether the kernel, GNU or third-party software, normally there is a more or less rapid evolution of versions, either through the correction of bugs or new features. This means that in the event of wanting to create a GNU/Linux system, we will have to choose which software we wish to install on the system, and which specific versions of that software.

 The world of GNU/Linux is not limited to a particular company or community, which means that it offers everyone the possibility of creating their own system adapted to their own requirements.

 Normally, among these versions there are always some that are stable and others that are under development in phase alpha or beta, which may contain errors or be unstable, which means that when it comes to creating a GNU/Linux system, we will have to be careful with our choice of versions. Another additional problem is the choice of alternatives, the world of GNU/Linux is sufficiently rich for there to be more than one alternative for the same software product. We need to choose among the available alternatives, incorporating some or all of them, if we wish to offer the user freedom of choice to select their software.

 Example 1.13. Example

 We find a practical example with the X Window desktop managers, which, for example, offer us (mainly) two different desktop environments such as Gnome and KDE; both have similar characteristics and similar or complementary applications.

 In the case of a distributor of GNU/Linux systems, whether commercial or non-profit, the distributor's responsibility is to generate a system that works, by selecting the best software products and versions available.

 In this case, a GNU/Linux distribution [Dis] is a collection of software that makes up an operating system based on the Linux kernel.

 An important fact that needs to be taken into account, and that causes more than a little confusion, is that because each of the distribution's software packages will have its own version (irrespective of the distribution it is located on) the allocated distribution number does not correspond to the software packages versions.

 Example 1.14. Example

 Let's look at a few versions as an example (the versions that appear refer to the end of 2003):

 a) Linux kernel: we can currently find distributions that offer one or more kernels, such as those of the old series 2.4.x or generally, the latest 2.6.x in revisions of varying recentness (the number x).

 b) The X Window graphics option, in open source version, which we can find on practically all GNU/Linux systems, whether as some residual versions of Xfree86 such as the ones handled by 4.x.y versions or as the new Xorg project (a fork of the previous one in 2003), which is more popular in various versions 6.x or 7.x.

 c) Desktop or windows manager: we can have Gnome or KDE, or both; Gnome with versions 2.x or KDE 3.x.y.

 For example, we could obtain a distribution that included kernel 2.4, with XFree 4.4 and Gnome 2.14; or another, for example, kernel 2.6, Xorg 6.8, KDE 3.1. Which is better? It is difficult to compare them because they combine a mixture of elements and depending on how the mixture is made, the product will come out better or worse, and more or less adapted to the user's requirements. Normally, the distributor will maintain a balance between the system's stability and the novelty of included versions. As well as provide attractive application software for the distribution's users, whether it is of a general nature or specialized in any specific field.

 In general, we could analyse the distributions better on the basis of the following headings, which would each have to be checked:

	
 Version of the Linux kernel: the version is indicated by numbers X.
 Y.
 Z, where normally X is the main version, which represents important changes to the kernel; Y is the secondary version and usually implies improvements in the kernel's performance: Y is even for stable kernels and uneven for developments or tests. And Z is the build version, which indicates the revision number of X.Y, in terms of patches or corrections made. Distributors tend not to include the kernel's latest version, but rather the version that they have tested most frequently and have checked is stable for the software and components that they include. This classical numbering scheme (which was observed for branches 2.4.x, until the first ones of 2.6), was slightly modified to adapt to the fact that the kernel (branch 2.6.x) becomes more stable and that there are fewer revisions all the time (meaning a leap in the first numbers), but development is continuous and frenetic. Under the latest schemes, fourth numbers are introduced to specify in Z minor changes or the revision's different possibilities (with different added patches). The version thus defined with four numbers is the one considered to be stable. Other schemes are also used for the various test versions (normally not advisable for production environments), using suffixes such as -rc (release candidate), -mm, experimental kernels testing different techniques, or -git, a sort of daily snapshot of the kernel's development. These numbering schemes are constantly changing in order to adapt to the kernel community's way of working, and its needs in order to speed up the kernel's development.

	
 Packaging format: this is the mechanism used for installing and administering the distribution's software. It tends to be known for the format of the software packages it supports. In this case we normally find RPM, DEB, tar.gz, mdk formats, and although every distribution usually offers the possibility of using different formats, it tends to have a default format. The software normally comes with its files in a package that includes information on installing it and possible dependencies on other software packages. The packaging is important if third party software that does not come with the distribution is used, since the software may only be found in some package systems, or even in just one.

	
 File system structure: the main file system structure (/) tells us where we can find our fils (or the system's files) in the file system. GNU/Linux and UNIX have some file location standards (as we will see in the tools unit), such as FHS (filesystem hierarchy standard) [Lin03b]. Therefore, if we have an idea of the standard, we will know where to find most of the files; then it depends whether the distribution follows it more or less and tells us of any changes that have been made.

	
 System boot scripts: UNIX and GNU/Linux systems incorporate boot scripts (or shell scripts) that indicate how the machine should start up, what will be the process (or phases) followed, and what has to be done at each step. There are two models for this start up, those of SysV or BSD (this is a difference between the two main UNIX branches); and every distribution may choose one or the other. Although both systems have the same functionality, they differ in the details, and this will be important for administration issues (we will look at this under local administration). In our case, the analysed systems, both Fedora and Debian, use the SysV system (which we will look at under the unit on local administration), but there are other distributions such as Slackware that use the other BSD system. And there are some proposals (like Ubuntu's Upstart) of new options for this start up aspect.

	
 Versions of the system library: all the programs (or applications) that we have on the system will depend on a (bigger or smaller) number of system libraries for running. These libraries, normally of two types, whether static joined to the program (libxxx.a files) or dynamic runtime loaded (libxxx.so files), provide a large amount of utility or system code that the applications will use. Running an application may depend on the existence of corresponding libraries and the specific version of these libraries (it is not advisable, but can happen). A fairly common case affects the GNU C library, the standard C library, also known as glibc. An application may ask us for a specific version of glibc in order to be run or compiled. It is a fairly problematic issue and therefore, one of the parameters valued by the distribution is knowing what version of the glibc it carries and possible additional versions that are compatible with old versions. The problem appears when trying to run or compile an old software product on a recent distribution, or a very new software product on an old distribution.

 The biggest change occurred in moving to a glibc 2.0, in which all the programs had to be recompiled in order to run correctly, and in the different revisions numbered 2.x there have been a few minor modifications that could affect an application. In many cases, the software packages check whether the correct version of glibc is available or the name itself mentions the version that needs to be used (example: package-xxx-glibc2.rpm).

	
 X Window desktop: the X Window system is the graphics standard for desktop visualisation in GNU/Linux. It was developed by MIT in 1984 and practically all UNIX systems have a version of it. GNU/Linux distributions have different versions such as Xfree86 or Xorg. Usually, X Window is an intermediary graphic layer that entrusts another layer known as the windows manager to visualise its elements. Also, we can combine the windows manager with a variety of application programs and utilities to create what is known as a desktop environment.

 Linux mainly has two desktop environments: Gnome and KDE. Each one is special in that it is based on a library of its own components (the different elements of the environment such as windows, buttons, lists etc.): gtk+ (in Gnome) and Qt (in KDE), which are the main graphics libraries used to program applications in these environments. But in addition to these environments, there are many more windows or desktop managers: XCFE, Motif, Enlightement, BlackIce, FVWM etc., meaning that there is a broad range of choice. In addition, each one makes it possible to change the appearance (look & feel) of the windows and components as users' desire, or even to create their own.

	
 User software: software added by the distributor, mostly Open Source, for common tasks (or not so common, for highly specialised fields).

 Common distributions are so large that we can find hundreds to thousands of these extra applications (many distributions have 1 to 4 CDs – approximately 1 DVD of extra applications). These applications cover practically all fields, whether domestic, administrative or scientific. And some distributions add third party proprietary software (for example, in the case of an Office-type suite), server software prepared by the distributor, for example an e-mail server, secure web server etc.

 This is how each distributor tends to release different versions of their distribution, for example, sometimes there are distinctions between a personal, professional or server version.

 Often, this financial cost does not make sense, because the standard software is sufficient (with a bit of extra administration work); but it can be interesting for companies because it reduces server installation times and maintenance and also optimises certain critical servers and applications for the company's IT management.

 Debian

 The case of Debian [Debb] is special, in the sense that it is a distribution delivered by a community with no commercial objectives other than to maintain its distribution and promote the use of free and open source software.

 Debian is a distribution supported by an enthusiastic community of its own users and developers, based on the commitment to use free software.

 The Debian project was founded in 1993 to create the Debian GNU/Linux distribution. Since then it has become fairly popular and even rivals other commercial distributions in terms of use, such as Red Hat or Mandrake. Because it is a community project, the development of this distribution is governed by a series of policies or rules; there are documents known as the Debian Social Contract, which mention the project's overall philosophy and Debian's policies, specifying in detail how to implement its distribution.

 Example 1.15. Note

 We can see the Debian Social Contract documents at: debian.org.

 The Debian distribution is closely related to the objectives of the FSF and its GNU Free Software project; for this reason, they always include "Debian GNU/Linux" in their name; also, the text of their social contract has served as the basis for open source definitions. Where their policies are concerned, anyone who wishes to participate in the distribution project, must abide by them. Although not a collaborator, these policies can be interesting because they explain how the Debian distribution operates.

 [image: Note]

 We should also mention a practical aspect where end users are concerned: Debian has always been a difficult distribution. It tends to be the distribution used by Linux hackers, meaning those that gut the kernel and make changes, low level programmers, who wish to be on the leading edge to test new software, and to test unpublished kernel developments... in other words, all manner of folk who are mad about GNU/Linux.

 Earlier versions of Debian became famous for the difficulty of installing them. The truth is that not enough effort had been made to make it easy for non-experts. But with time things have improved. Now, the installation still requires a certain amount of knowledge, but can be done following menus (text menus, unlike other commercial versions that are totally graphic), and there are programs to facilitate package installations. But even so, the first attempts can be somewhat traumatic.

 Normally, they tend to be variants (called flavours) of the Debian distribution. Currently, there are three branches of the distribution: stable, testing and unstable. And, as their names indicate, stable is the one used for production environments (or users who want stability), testing offers newer software that has been tested minimally (we could say it is a sort of beta version of Debian) that will soon be included in the stable branch. And the unstable branch offers the latest novelties in software, and its packages change over a short time period; within a week, or even every day, several packages can change. All distributions are updatable from various sources (CD, FTP, web) or by a system known as APT which manages Debian DEB software packages. The three distributions have more common names assigned to them e.g. (in a Debian specific line of time):

	
 Etch (stable)

	
 Lenny (testing)

	
 Sid (unstable)

 The previous stable version was called Sarge (3.1r6), formerly Woody (that was 3.0). The most current one (in 2007), is the Debian GNU/Linux Etch (4.0). The most extended versions are Etch and Sid, which are the two extremes. At this time, Sid is not recommended for daily working environments (production), because it may have features that are halfway through testing and can fail (although this is uncommon); it is the distribution that GNU/Linux hackers tend to use. Also, this version changes almost daily; it is normal, if a daily update is wanted, for there to be between 10 and 20 new software packages per day (or even more at certain points in the development).

 Etch is perhaps the best choice for daily working environments, it is updated periodically in order to cover new software or updates (such as security updates). Normally, it does not have the latest software which is not included until the community has tested it with an extensive range of tests.

 We will comment briefly on some of this distribution's characteristics (current default versions of Etch and Sid):

	
 The current (stable) version consists of between 1 and 21 CDs (or 3 DVDs) of the latest available version of Etch. Normally there are different possibilities depending on the set of software that we find on physical support (CD or DVD) or what we can subsequently download from the Internet, for which we only need a basic CD (netinstall CD), plus the internet access to download the rest upon demand. This distribution can be bought (at a symbolic cost for the physical support, thus contributing to maintain the distribution) or can be downloaded from debian.org or its mirrors.

	
 The testing and unstable versions tend not to have official CDs, but rather a stable Debian can be converted into a testing or unstable version by changing the configuration of the APT packages system.

	
 Linux kernel: the default kernels were 2.4.x series and included an optional 2.6.x, which is now the default in the latest versions. The focus of the stable Debian is to promote stability and to leave users the option of another more updated software product if they need it (in unstable or testing).

	
 Packaging format: Debian supports one of the formats that offers most facilities, APT. The software packages have a format known as DEB. APT is a high level tool for managing them and maintaining a database of instantly installable or available ones. Also, the APT system can obtain software from various sources, CD, FTP, or web.

	
 The APT system is updatable at any time, from a list of Debian software sources (APT sources), which may be default Debian (debian.org) or third party sites. This way we are not linked to a single company or to a single subscription payment system.

	
 Some of the versions used are, for example: Xfree86(4.x), glibc (2.3.x)... Debian Sid has Xorg (7.1), glibc (2.3.x)...

	
 For the desktop, it accepts Gnome 2.16.x (default) or KDE 3.3.x (K Desktop Environment). Unstable with Gnome 2.18.x and KDE 3.5.x.

	
 In terms of interesting applications, it includes the majority of those we tend to find in GNU/Linux distributions; in Sid: editors such as emacs (and xemacs), gcc compiler and tools, Apache web server, Mozilla (or Firefox) web browser, Samba software for sharing files with Windows etc.

	
 It also includes office suites such as OpenOffice and KOffice.

	
 Debian includes many personalised configuration files for distribution in /etc directories.

	
 Debian uses the lilo, boot manager by default, although it can also use Grub.

	
 The configuration for listening to TCP/IP network services, which is done, as on most UNIX systems, with the inetd server (/etc/inetd.conf). Although it also has an optional xinetd, which is becoming the preferred choice.

	
 There are many more GNU/Linux distributions based on Debian, since the system can be easily adapted to make bigger or smaller distributions with more or less software adapted to a particular segment. One of the most famous ones is Knoppix, a single CD distribution, of the Live CD type (run on CD), which is commonly used for GNU/Linux demos, or to test it on a machine without previously installing it, since it runs from the CD, although it can also be installed on the hard disk and become a standard Debian. Linex is another distribution that has become quite famous because of its development supported by the local authority of the autonomous community of Extremadura. At the same time, we find Ubuntu, one of the distributions to have achieved the greatest impact (even exceeding Debian in several aspects), because of its ease for building an alternative desktop.

 Example 1.16. Note

 Debian can be used as a base for other distributions; for example, Knoppix is a distribution based on Debian that can be run from CD without having to install it on the hard drive. Linex is a Debian distribution adapted to the autonomous community of Extremadura as part of its project to adopt open source software. And Ubuntu is a distribution optimised for desktop environments.

 [image: Note]

 Fedora Core

 Red Hat Inc. [Redh] is one of the main commercial companies in the world of GNU/Linux, with one of the most successful distributions. Bob Young and Marc Ewing created Red Hat Inc. in 1994. They were interested in open source software models and thought it would be a good way of doing business. Their main product is their Red Hat Linux distribution (which we will abbreviate to Red Hat), which is available to different segments of the market, individual users (personal and professional versions), or medium or large companies (with their Enterprise version and its different sub-versions).

 Important

 Red Hat Linux is the main commercial distribution of Linux, oriented at both the personal desktop and high range server markets. Additionally, Red Hat Inc. is one of the companies that collaborates the most in the development of Linux, since various important members of the community work for it.

 [image: Fedora Core]

 Although they work with an open source model, it is a company with commercial objectives, which is why they tend to add value to their basic distribution through support contracts, update subscriptions and other means. For businesses, they add tailor-made software (or own software), to adapt it to the company's needs, either through optimised servers or utility software owned by Red Hat.

 As of a certain point (towards the end of 2003), Red Hat Linux (version 9.x), decided to discontinue its desktop version of GNU/Linux, and advised its clients to migrate towards the company's business versions, which will continue to be the only officially supported versions.

 Example 1.17. Note

 See: http://fedoraproject.org

 At that moment, Red Hat decided to initiate the project open to the community known as Fedora [Fed], with a view to producing a distribution guided by the community (Debian-style, although for different purposes), to be called Fedora Core. In fact, the goal is to create a development laboratory open to the community that makes it possible to test the distribution and at the same time to guide the company's commercial developments in its business distributions.

 To some extent, critics have pointed out that the community is being used as betatesters for technologies that will subsequently be included in commercial products. Also, this model is subsequently used by other companies to create in turn dual models of community and commercial distributions. Examples such as OpenSuse appear (based on the commercial SuSe), or Freespire (based on Linspire).

 Normally, the duo of Red Hat and the Fedora community present a certain conservative vision (less accentuated at Fedora) of the software elements it adds to the distribution, since its main market is businesses, and it tries to make its distribution as stable as possible, even if it means not having the latest versions. What it does do as an added value is to extensively debug the Linux kernel with its distribution and to generate corrections and patches to improve its stability. Sometimes, it can even disable a functionality (or driver) of the kernel, if it considers that it is not stable enough. It also offers many utilities in the graphics environment and its own graphics programs, including a couple of administration tools; in terms of graphics environments, it uses both Gnome (by default) and KDE, but through its own modified environment called BlueCurve, which makes the two desktops practically identical (windows, menus etc.).

 The version that we will use will be the latest available Fedora Core, which we will simply call Fedora. In general, the developments and features that are maintained tend to be fairly similar in the versions released later, meaning that most comments will be applicable to the different versions over time. We should take into account that the Fedora [Fed] community tries to meet a calendar of approximately 6 months for each new version. And there is a certain consensus over what new features to include.

 Red Hat, on the other hand, leaves its desktop versions in the hands of the community and focuses its activity on the business versions (Red Hat Linux Enterprise WS, ES, and AS).

 Let's look briefly at a few characteristics of this Fedora Core distribution:

	
 The current distribution consists of 5 CDs, the first one being the bootable one, which serves for the installation. There are also extra CDs containing documentation and the source code of most of the software installed with the distribution. The distribution is also provided on 1 DVD.

	
 Linux kernel: it uses kernels of the 2.6.x series, which can be updated with the rpm packages system (see unit on the kernel) (through the yum utility for example). Red Hat, for its part, subjects the kernel to many tests and creates patches for solving problems, which are normally also incorporated into the version of the Linux community, since many important Linux collaborators also work for Red Hat.

	
 Packaging format: Red Hat distributes its software through the RPM packages system (red hat package manager), which are managed by the rpm command or the yum utilities (we will comment on this in the unit on local administration). RPM is one of the best available packaging systems (similar to Debian's deb), and some proprietary UNIX systems are including it. Basically, the RPM system maintains a small database with the installed packages and verifies that the package to be installed with the rpm command is not already installed or does not enter into conflict with any other software package, or on the other hand that a software package or the version required by the installation is not missing. The RPM package is basically a set of compressed files containing information on dependencies or on the software that it requires.

	
 Regarding start up, it uses scripts of the System V type (which we will look at in the unit on local administration).

	
 Some of the versions used are: Xorg (7.x), glibc (2.5.x) etc.

	
 The desktop accepts Gnome (default desktop) and KDE as an option.

	
 Where interesting applications are concerned, it includes most of the ones we tend to find with almost all GNU/Linux distributions: editors such as emacs (and xemacs), gcc compiler and tools, Apache web server, Firefox/Mozilla web browser, Samba software for sharing files with Windows etc.

	
 It also includes office suites such as OpenOffice and KOffice.

	
 Additional software can be obtained through the yum update services (among others) in a similar way to the Debian APT system or using different update tools, or from the Internet using RPM packages designed for the distribution.

	
 Fedora uses the Grub boot loader by default to start up the machine.

	
 Red Hat has replaced the configuration for listening to the TCP/IP network services, which for most UNIX systems uses the inetd server (/etc/inetd.conf), with xinetd, which has a more modular configuration (directory/etc/xinetd.d).

	
 Upon start up it has a program called Kudzu which verifies any changes in hardware and detects newly installed hardware. We expect that it will be left out of following versions, because there is now a new API called HAL, which performs this function.

	
 There are several more distributions based on the original Red Hat, which retain many of its characteristics, in particular Mandriva (formerly Mandrake): a French distribution, that was originally based on Red Hat and that together with Red Hat remains among the leaders in terms of user preferences (especially for desktop work). Mandriva develops its own software and lots of wizards to help with the installation and administration of the most common tasks, separating itself from its origin based on Red Hat. At the same time, Red Hat business versions have also given rise to a series of very popular free distributions in server environments, such as CentOS [Cen] (which tries to maintain 100% compatibility with the business Red Hat), and Scientific Linux [Sci] (specialised in scientific computing for scientific research projects). As for the packaging system, it is worth noting that the rpm system is used for a large number of distributions, including SuSe.

 [image: Note]

 Regarding the community distribution Fedora Core, and its commercial origins in Red Hat:

	
 It is a distribution created by a community of programmers and users based on development; it does not have any support for updates or maintenance on the part of the manufacturer. This aspect comes to depend on the community, as in the case of the Debian GNU/Linux distribution.

	
 These versions are produced fairly rapidly, and new versions of the distribution are expected approximately every six months.

	
 It also uses the RPM package management system. In terms of the process of updating the distribution's packages or installing other new ones, it can be achieved by means of different tools, via update, through the Fedora update channels or the new Yum update systems and in some cases Apt (inherited from Debian, but that works with RPM files).

	
 Other more technical aspects (some of which we will look at in later chapters) can be found in the Fedora Core version notes.

 Example 1.18. Note

 See Fedora Release Notes at:

 http://docs.fedoraproject.org/

Printing services

 The GNU/Linux [Gt] [Smi02] printing server derives from UNIX's BSD variant; this system was called LPD (line printer daemon). This is a very powerful printing system, because it integrates the capacity to manage both local and network printers. And it provides this service within the system for both the client and the printing server.

 LPD is a system that is quite old, as its origins date back to UNIX's BSD branch (mid 1980s). Consequently, LPD usually lacks support for modern devices, given that the system was not originally conceived for the type of printing that takes place now. The LPD system was not designed as a system based on device drivers, as it was typical to produce only printers in series or in parallel for writing text characters.

 Currently, the LPD system combines with another common software, such as the Ghostscript system, which offers a postscript type output for a very wide range of printers for which it has the right drivers. At the same time, they are usually combined with filtering software, which, depending on the type of document that must be printed, selects the appropriate filters. Normally, the procedure that should be followed is (basically):

 Example 5.7. Note

 The UNIX systems provide, possibly, the most powerful and complex printing systems, which provide a lot of flexibility to printing environments.

 1) The work is started by a command in the LPD system.

 2) The filtering system identifies the type of job (or file) that must be used and transforms the job into an outgoing postscript file, which is the one sent to the printer. In GNU/Linux and UNIX, most of the applications assume that the job will be sent to a postscript printer and many of them directly generate a postscript output, which is why the following step needs to be taken.

 3) The Ghostscript has to interpret the postscript file it receives, and, depending on the driver of the printer to which the file has been sent, it performs the transformation to the driver's own format. If the printer is a postscript type printer, the printing process is direct; if not, it has to "translate" the job. The job is sent to the printing queue.

 Example 5.8. Web site

 Ghostscript: http://www.ghostscript.com/

 Apart from the LPD printing system (that originated with UNIX's BSD), there is also the system known as System V (originally in the other System V branch of UNIX). Normally, for compatibility reasons, most UNIX systems integrate both systems, so that either one or the other is used as the main one and the other emulates the main one. In the case of GNU/Linux, a similar process occurs, depending on the installation that we have, we can have only the LPD commands of the printing system, but it will also be common to have the System V commands. A simple way of identifying the two systems (BSD or System V) is using the main printing command (which sends the jobs to the system), in BSD, it is Ipr, and it is Ip in System V.

 This is the initial situation for the GNU/Linux printing systems, although over the last few years, more systems have appeared, which provide more flexibility and make more drivers available for the printers. The two main systems are CUPS and, to a lesser extent, LPRng. In fact, recently, CUPS is GNU/Linux's de facto standard, although the other systems must be supported for compatibility with the existing UNIX systems.

 Example 5.9. Web sites

 LPRng: http://www.lprng.org

 CUPS: http://www.cups.org

 Both (both CUPS and LPRng) are a type of higher-level system, but they are not all that perceptibly different for average users, with regard to the standard BSD and System V systems; for example, the same client commands (or compatible commands in the options) are used for printing. There are perceptible differences for the administrator, because the configuration systems are different. In one way, we can consider LPRng and CUPS as new architectures for printing systems, which are compatible for users with regard to the old commands.

 In the current GNU/Linux distributions, we can find different printing systems. If the distribution is old, it may only incorporate the BSD LPD system; in the current distributions: both Debian and Fedora/Red Hat use CUPS. In older versions of Red Hat, there was a tool, Print switch, which made it possible to change the system, switching the printing system, although recently only CUPS is available. In Debian, it is possible to install both systems, but they are mutually exclusive: only one may be used for printing.

 In the case of Fedora Core, the default printing system is CUPS (as LPRng disappeared in Fedora Core 4), and the Print Switch tool no longer exists, as it is no longer necessary: system-config-printer is used to configure devices. By default, Debian uses BSD LPD, but it is common to install CUPS (and we can expect it to continue to be the default option in future new versions) and LPRng may also be used. In addition, we must remember that we also had the possibility (seen in the unit on migration) of interacting with Windows systems through the Samba protocols, which allowed you to share printers and access to these printers.

 Regarding each of the [Gt] systems:

	
 BSD LPD: this is one of UNIX's standards, and some applications assume that the commands and the printing system will be available, for which both LPRng and CUPS emulate the functions and commands of BDS LPD. The LPD system is usable but not very configurable, especially with regard to access control, which is why the distributions have been moved to other, more modern, systems.

	
 LPRng: basically it was designed to replace BSD, and therefore, most of the configuration is similar and only some of the configuration files are different.

	
 CUPS: it is the biggest deviation from the original BSD and the configuration is the same. Information is provided to the applications on the available printers (also in LPRng). In CUPS, both the client and the server have to have CUPS software.

 The two systems emulate the printing commands of System V.

 For GNU/Linux printing, various aspects have to be taken into account:

	
 Printing system that is used: BSD, LPRng or CUPS.

	
 Printing device (printer): it may have a local connection to a machine or be on the network. The current printers may be connected to a machine using local connections, through interfaces in series, in parallel, USB etc. Or they may simply be on the network, as another machine, or with special ownership protocols. Those connected to the network can normally act themselves as a printing server (for example, many HP laser printers are BSD LPD servers) or they can be connected to a machine that acts as a printing server for them.

	
 Communication protocols used with the printer or the printing system: whether it is direct TCP/IP connection (for example, an HP with LPD) or high level ones based on TCP/IP, such as IPP (CUPS), JetDirect (some HP printers) etc. This parameter is important, as we have to know it so as to install the printer in a system.

	
 Filtering systems used: each printing system supports one or more.

	
 Printer drivers: in GNU/Linux, there are quite a few different types; we might mention, for example CUPS drivers, the system's or third parties' (for example, HP and Epson provide them); Gimp, the image editing program also has drivers optimised for printing images; Foomatic is a driver management system that works with most systems (CUPS, LPD, LPRng and others); Ghostscript drivers etc. In almost all printers, there are one or more of the drivers in these sets.

 Example 5.10. Web site

 Information on the most appropriate printers and drivers can be found at: http://www.openprinting.org/printer_list.cgi

 With regard to the client part of the system, the basic commands are the same for the different systems and these are the BSD system commands (each system supports emulation of these commands):

	
 lpr: a job is sent to the default printing queue (or the one that is selected), and the printing daemon (lpd) then sends it to the corresponding queue and assigns a job number, which will be used with the other commands. Normally, the default printer would be indicated by the PRINTER system variable or the first defined and existing one will be used or, in some systems, the Ip queue will be used (as the default name).

 Example 5.11. Example

 Lpr example:

 lpr –Pepson data.txt

 This command sends the data.txt file to the print queue associated to a printer that we have defined as "epson".

	
 lpq: This allows us to examine the jobs in the queue.

 Example 5.12. Example

 Example

 	

 # lpq -P epson

	

 Rank

 	

 Owner

 	

 Job Files

 	

 Total

 	

 Size

	

 1st

 	

 juan

 	

 15

 	

 data.txt

 	

 74578 bytes

	

 2nd

 	

 marta

 	

 16

 	

 fpppp.F

 	

 12394 bytes

 This command shows us the jobs in the queue, with the respective order and sizes; the files may appear with different names, as this depends on whether we have sent them with Ipr or with another application that might change the names when it sends them or if any filters have had to be used when converting them.

	

 lprm: eliminates jobs from the queue and we can specify a job number or the user, to cancel these operations.

 Example 5.13. Example

 lprm -Pepson 15

 Delete the job with id 15 from the queue.

 With regard to the administrative side (in BSD), the main command would be lpc; this command can be used to activate or deactivate queues, move jobs in the queue order and activate or deactivate the printers (jobs may be received in the queues but they are not sent to the printers).

 We should also point out that, in the case of System V, the printing commands are usually also available, normally simulated on the basis of the BSD commands. In the client's case, the commands are: lp, lpstat, cancel and, for administrative subjects, lpadmin, accept, reject, lpmove, enable, disable, lpshut.

 In the following sections we will see that it is necessary to configure a printer server for the three main systems. These servers may be used both for local printing and for the network clients' prints (if they are enabled).

 BSD LPD

 In the case of the BSD LPD server, there are two main files that have to be examined: on the one hand, the definition of the printers in /etc/printcap and, on the other, the network access permissions in /etc/hosts.lpd.

 With regard to the permissions, by default, BSD LPD only provides local access to the printer and, therefore, it has to be expressly enabled in /etc/hosts.lpd.

 Example 5.14. Example

 The file may be:

 #file hosts.lpd
second
first.the.com
192.168.1.7
+@groupnis
-three.the.com

 which would indicate that it is possible to print to a series of machines, listed either by their DNS name or by the IP address. Machine groups that belong to a NIS server (groupnis, as shown in the example) may be added or it is possible to deny access to several machines by indicating this with a dash (-).

 With regard to the configuration of the server in /etc/printcap, we define inputs, in which each represents a printing system queue that can be used to stop the printing jobs. The queue may be associated to a local device or a remote server, whether this is a printer or another server.

 The following options may exist in each port:

	
 lp =, indicates the device to which the printer is connected, for example, lp = /dev/lp0 would indicate the first parallel port. If the printer is an LPD-type printer, for example, a network printer that accepts the LPD protocol (such as an HP), then we can leave the box empty and fill in the following.

	
 rm =, address with name or IP of the remote machine that will use the printing queue. If it is a network printer, it will be this printer's address.

	
 rp =, name of the remote queue, in the machine indicated before with rm.

 Let us examine an example:

 # Local printer input
lp|epson|Epson C62:\
 :lp=/dev/lp1:sd=/var/spool/lpd/epson:\
 :sh:pw#80:pl#72:px#1440:mx#0:\
 :if = /etc/magicfilter/StylusColor@720dpi-filter:\filter
 :af = /var/log/lp-acct:lf = /var/log/lp-errs:
Remote printer input
hpremote|hpr|remote hp of the department|:\
 :lp = :\
 :rm = server:rp = queuehp:\
 :lf = /var/adm/lpd_rem_errs:\log file.
 :sd = /var/spool/lpd/hpremote:local associated spool

 LPRng

 In the case of the LPRng system, as this was made to maintain BSD compatibility, and, among other improvements with regard to access, the system is compatible in terms of the configuration of queues and this is performed through the same file format, /etc/printcap, with some additional intrinsic operations.

 Where the configuration is different is with regard to access: in this case, we generally obtain access through a /etc/lpd.perms file that is general for the whole system and there may also be individual configurations for each queue with the lpd.perms file placed in the directory corresponding to the queue, usually /var/spool/lpd/name-queue.

 These lpd.perms files have a greater capacity for configuring the access and permit the following basic commands:

 DEFAULT ACCEPT
DEFAULT REJECT
ACCEPT [key = value[,value]*]*
REJECT [key = value[,value]*]*

 where the first two allow us to establish the default value, of accepting everything or rejecting everything, and the next two of accepting or rejecting a specific configuration in the line. It is possible to accept (or reject) requests from a specific host, user or IP port. Likewise, it is possible to configure the type of service that will be provided to the element: X (may be connected), P (job printing), Q (examine queue with lpq), M (remove jobs from the queue, lprm), C (control printers, Ipc command lpc), among others, as with the file:

 ACCEPT SERVICE = M HOST = first USER = jose
ACCEPT SERVICE = M SERVER REMOTEUSER = root
REJECT SERVICE = M

 Deleting jobs from the queue is allowed for the (first) user of the machine and the root user from the server where the printing service is hosted (localhost) and, in addition, whatsoever other requests for deleting jobs from the queue that are not the already established are rejected.

 With this configuration, we have to be very careful, because in some distributions, the LPRng services are open by default. The connection may be limited, for example, with:

 ACCEPT SERVICE = X SERVER
REJECT SERVICE = X NOT REMOTEIP = 100.200.0.0/255

 Connection service only accessible to the server's local machine and denying access if the machine does not belong to our subnet (in this case, we are assuming that it is 100.200.0.x).

 For the administration of line commands, the same tools as the standard BSD are used. With regard to the graphical administration of the system, we should point out the lprngtool tool (not available in all versions of the LPRng system).

 [image: LPRng]

 There are various software packages related to LPRng; for example, in a Debian, we might find:

 lprng - lpr/lpd printer spooling system
lprng-doc - lpr/lpd printer spooling system (documentation)
lprngtool - GUI front-end to LPRng based /etc/printcap
printop - Graphical interface to the LPRng print system.

 CUPS

 CUPS is a new architecture for the printing system that is quite different; it has a layer of compatibility with BSD LPD, which means that it can interact with servers of this type. It also supports a new printing protocol called IPP (based on http), but it is only available when the client and the server are CUPS-type clients and servers. In addition, it uses a type of driver called PPD that identifies the printer's capacities; CUPS comes with some of these drivers and some manufacturers also offer them (HP and Epson).

 CUPS has an administration system that is completely different, based on different files: /etc/cups/cupsd.conf centralises the configuration of the printing system, /etc/cups/printers.conf controls the definition of printers and /etc/cups/classes.conf the printer groups.

 In /etc/cups/cupsd.conf, we can configure the system according to a series of file sections and the directives of the different actions. The file is quite big; we will mention some important directives:

	
 Allow: this permits us to specify which machines may access the server, either in groups or individually, or segments of the network's IP.

	
 AuthClass: makes it possible to indicate whether the user clients will be asked to authenticate their accounts or not.

	
 BrowseXXX: there is a series of directives related to the possibility of examining a network to find the served printers; this possibility is activated by default (browsing on), which means that we will normally find that all the printers available in the network are available. We can deactivate it, so that we only see the printers that we have defined. Another important option is BrowseAllow, which we use to determine who is permitted to ask for our printers; it is activated by default, which means that anyone can see our printer from our network.

 We must point out that CUPS is, in principle, designed so that both clients and the server work under the same system; if the clients use LPD or LPRng, it is necessary to install a compatibility daemon called cups-lpd (normally in packages such as cupsys-bsd). In this case, CUPS accepts the jobs that come from an LPD or LPRng system, but it does not control the accesses (cupsd.conf only works for the CUPS system itself and therefore, it will be necessary to implement some strategy for controlling access, like a firewall, for example (see unit on security).

 For administering from the commands line, CUPS is somewhat peculiar, in that it accepts both LPD and System V commands in the clients, and the administration is usually performed with the SystemV's lpadmin command. Where the graphic tools are concerned, we have the gnome-cups-manager, gtklp or the web interface which comes with the same CUPS system, accessible at http://localhost:631.

 [image: CUPS]

 With regard to the software packages listed with CUPS, in Debian, we can find (among others):

 cupsys - Common UNIX Printing System(tm) - server
cupsys-bsd - Common UNIX Printing System(tm) - BSD commands
cupsys-client - Common UNIX Printing System(tm) - client programs (SysV)
cupsys-driver-gimpprint - Gimp-Print printer drivers for CUPS
cupsys-pt - Tool for viewing/managing print jobs under CUPS
cupsomatic-ppd - linuxprinting.org printer support - transition package
foomatic-db - linuxprinting.org printer support - database
foomatic-db-engine - linuxprinting.org printer support - programs
foomatic-db-gimp-print - linuxprinting - db Gimp-Print printer drivers
foomatic-db-hpijs - linuxprinting - db HPIJS printers
foomatic-filters - linuxprinting.org printer support - filters
foomatic-filters-ppds - linuxprinting - prebuilt PPD files
foomatic-gui - GNOME interface for Foomatic printer filter system
gimpprint-doc - Users' Guide for GIMP-Print and CUPS
gimpprint-locals - Local data files for gimp-print
gnome-cups-manager - CUPS printer admin tool for GNOME
gtklp - Front-end for cups written in gtk

System security

 In the face of potential attacks, we need to have mechanisms for preventing, detecting and recovering our systems.

 For local prevention, we need to examine the different mechanisms of authentication and permissions for accessing the resources in order to define them correctly and be able to guarantee the confidentiality and integrity of our information. In this case, we will be protecting ourselves against attackers that have obtained access to our system or against hostile users who wish to overcome the restrictions imposed on the system.

 In relation to network security, we need to guarantee that the resources that we offer (if we provide certain services) have the necessary parameters of confidentiality and that the services cannot be used by unauthorised third parties, meaning that a first step will be to control which of the offered services are the ones we really want, and that we are not offering other services that are uncontrolled at the same time. In the case of services of which we are clients, we will also have to ensure the mechanisms of authentication, in the sense that we access the right servers and that there are no cases of substitution of services or servers (normally fairly difficult to detect).

 With regards to the applications and the services themselves, in addition to guaranteeing the right configuration of access levels using permissions and authentication of authorised users, we need to monitor the possible exploitation of software bugs. Any application, however well designed and implemented may have a more or less high number of errors that can be taken advantage of in order to overcome imposed restrictions using certain techniques. In this case, we enforce a policy of prevention that includes keeping the system updated as much as possible, so that we either update whenever there is a new correction or if, we are conservative, we maintain those versions that are the most stable in security terms. Normally, this means periodically checking several security sites in order to learn about the latest failures detected in the software and the vulnerabilities that stem from them that could expose our systems to local or network security failures.

Migration or coexistence

 Next, we will consider another important aspect in adopting GNU/Linux systems. Let's suppose that we are amateurs at handling this system; or, the opposite, that we are experienced and wish to adopt one or several GNU/Linux systems as individual users for working in our small organisation; or that we are considering replacing the infrastructure of our large company or organisation in full (or part).

 Migrating to a new system is no trivial matter, it needs to be evaluated through a study that analyses both the costs and the beneficial features that we expect to obtain. Also, migration can be done in full or in part, with a certain degree of coexistence with former systems.

 We will be dealing with a full or partial migration project of our IT systems to GNU/Linux and, as administrators, we will be responsible for this process.

 As in any project, we will have to study the way of responding to questions such as: Does the change make sense in financial terms or in terms of performance benefits? What is the migration's objective? What requirements will we want to or need to fulfil? Can we do a partial migration or do we need to do a full migration? Is coexistence with other systems necessary? Will we need to retrain users? Will we be able to use the same hardware or will we need new hardware? Will there be important added costs? Or simply, will it go okay? These and many others are the questions that we will have to try and answer. In the case of a company, the answers would be provided in a migration project, specifying its objectives, requirements, the implementation process, and including a financial analysis, user training plans etc. We will not go into this in detail, but will consider some of these issues in a simple manner. And in the final workshop we will examine a few small cases of how we would implement the migration.

 Also, the moment we start migrating to GNU/Linux, we will start to notice the advantages the system brings to our organisation:

 a) Costs: reduction in license costs for the system's software and applications. GNU/Linux has 0 cost for licenses if purchased from the Internet (for example, in the form of images from the distribution's CDs), or a negligible cost if we take into account that the nearest comparison for systems with equivalent features would be Windows Server systems with license costs ranging between € 1,500 and € 3,000, without including a large amount of the additional software that a typical GNU/Linux distribution would include.

 But careful, we should not underestimate maintenance and training costs. If our organisation consists solely of users and administrators trained in Windows, we may have high costs for retraining personnel and, possibly, for maintenance. Therefore, many big companies prefer to depend on a commercial distributor of GNU/Linux to implement and maintain the system, such as the business versions offered by Red Hat, SuSe and others. These GNU/Linux versions also have high license costs (comparable to Windows), but at the same time are already adapted to business structures and contain their own software for managing companies' IT infrastructure. Another important aspect, to conclude with cost estimates, is the TCO concept (total cost of ownership), as a global evaluation of the associated costs that we will find when we undertake a technological development; we don't just have to evaluate the costs of licenses and machines, but also the costs of training and support for the people and products involved, which may be as high or more than the implemented solution.

 b) Support: GNU/Linux offers the best maintenance support that any operating system has ever had, and it is mostly free. Nevertheless, some companies are reluctant to adopt GNU/Linux on the basis that there is no product support and prefer to buy commercial distributions that come with support and maintenance contracts. GNU/Linux has a well-established support community worldwide, through various organisations that provide free documentation (the famous HOWTOs), specialised user forums, communities of users in practically any region or country in the world etc. Any question or problem we have can be searched on the Internet and we can find answers within minutes. If we don't, if we have found a bug, error, or untested situation, we can report it on various sites (forums, development sites, distribution bug sites etc.), and obtain solutions within hours or, at the most, within days. Whenever we have a question or problem, we should first try a few procedures (this is how we will learn) and if we do not find the solution within a reasonable amount of time, we should consult the GNU/Linux community in case any other user (or group of users) has encountered the same problem and found a solution, and if not, we can always post a report on the problem and see if we are offered solutions.

 Example 2.5. Note

 Linux Howto's: http://www.tldp.org/

 Identify service requirements

 Normally, if we have systems that are already functioning we will have to have some services implemented for users or for helping the infrastructure of the IT support. The services will fall within some of the categories seen above, with the GNU/Linux options that we mentioned.

 GNU/Linux systems are not at all new, and as we saw in the introduction, stem from a history of more than thirty years of UNIX systems use and development. Therefore, one of the first things that we will find is that we are not lacking support for any type of service we want. If anything, there will be differences in the way of doing things. Also, many of the services used by IT systems were conceived, researched, developed and implemented in their day for UNIX, and only subsequently adapted to others systems (such as Windows, more or less successfully).

 Important

 Many companies with proprietary UNIX participate in GNU/Linux and offer some of their developments to the community.

 Any service available at the time may be adapted to GNU/Linux systems with equivalent (if not the same) services.

 Example 2.6. Example

 A famous case is the one of the Samba servers [Woo00] [Sam]. Windows offers what it calls "sharing files and printers on the network" by means of its own protocols known generically as SMB (server message block) [Smb] (with network support in the NetBios and NetBEUI protocols). The name CIFS (common Internet file system) is also commonly used, which is what the protocol was called in a second revision (which continued to include SMB as a basic protocol). These protocols allowed the sharing of files (or disks) and printers on a network of Windows machines (in a workgroup configuration or in Windows domains). In UNIX this idea was already old when it appeared in Windows and services such as NFS for sharing files or managing printers remotely were already available using TCP/IP protocols.

 One of the problems with replacing the Windows sharing services based on NetBios/NetBeui (and ultimately with NetBios over TCP/IP) was how to support these protocols, since if we wanted to keep the client machines with Windows, we could not use the UNIX services. For this purpose, Samba was developed as a UNIX server that supported Windows protocols and that could replace a Windows server/client machine transparently, with client users with Windows not having to notice anything at all. Moreover, the result in most cases was that the performance was comparable if not better than in the original machine with Windows services.

 Currently, Samba [Sam] is constantly evolving to maintain compatibility with Windows file and printer sharing services; because of the general changes that Microsoft subjects SMB/CIFS [Smb] protocols to (the base implemented by Samba) with each new Windows version, in particular the evolution of workgroup schemes in the operating systems' client versions, to centralised server (or group of servers) schemes, with specific user authentication services (NTLM, NTLMv2, Kerberos), and centralised storage of the system's management such as Active Directory. In addition to this, the configuration of existing domain servers (whether with primary controller, backup or Active Directory).

 Currently, in migration processes with Samba, we will need to observe what configurations of Windows clients/servers (and its versions) exist on the system, as well as what user authentication and/or information management systems are used. Also, we will need to know how the system is structured into domains (and its controller servers, members or isolated servers), in order to make a complete and correct mapping towards Samba-based solutions, and into complementary user authentication (winbind, kerberos, nss_ldap) and management services (for example openLDAP) [Sama] [Samb] .

 Migration process

 In the migration process, we need to consider how we want to migrate and if we want to migrate totally or partially, coexisting with other services or equipment that has a different operating system .

 In the environments of large organisations, where we find a large number of heterogeneous systems, we will need to take into account that we will almost certainly not migrate every one of them, especially workstation type systems that are dedicated to running a basic application for a specific task; it could be that there is no equivalent application or simply that we wish to keep these systems for financial reasons or in order to maximise an investment.

 We can migrate various elements, whether the services we offer, the machines that offer the services or the clients who access the services.

 Elements that can be migrated include:

 a) Services or machines dedicated to one or more services. In migrating, we will replace the service with another equivalent one, normally with minimum possible impact unless we also wish to replace the clients. In the case of Windows clients, we can use the Samba server to replace the file and printer services offered by the Windows machines. For other services, we can replace them with GNU/Linux equivalents. In the case of replacing just one service, normally we will disable the service on the machine that offered it and enable it on the new system. Client changes may be necessary (for example, new machine addresses or parameters related to the service).

 If a server machine was responsible for an entire function, we will need to analyse whether the machine was dedicated to one or more services and whether they can all be replaced. If so, we will just have to replace the old machine with the new one (or maintain the old one) with the services under GNU/Linux and in any case, modify a client parameter if necessary. Normally, before making a change, it is advisable to test the machine separately with a few clients in order to make sure that it performs the function correctly and then to replace the machines during a period when the system is inactive.

 In any case, we will certainly have to back up data existing prior to the new system, for example, file systems or the applications available in the original server. Another point to consider in advance is data portability; a problem we often find is compatibility when the organisation used data or applications that depended on a platform.

 Example 2.7. Example

 To mention a few practical cases that some companies find nowadays:

	
 Web applications with ASP: these applications can only be executed on web platforms with Windows and Microsoft's IIS web server. We should avoid them if we intend to migrate platforms at any time and don't wish to rewrite them or pay another company to do so. GNU/ Linux platforms have the Apache web server (the most commonly used on the Internet), which can also be used with Windows, this server supports ASP in Perl (in Windows it generally uses visual basic, C# and Javascript), there are third party solutions to migrate ASP or to more or less convert them. But if our company depended on this, it would be very costly in terms of time and money. A practical solution would have been to make the web developments in Java (which is portable between platforms) or other solutions such as PHP. On this point, we should highlight the Mono project [Mon] (sponsored by Novell) for portability of part of Microsoft's .NET environment to GNU/Linux, in particular a large amount of the.NET API's, C# language, and the ASP.NET specification. Allowing a flexible migration of .NET applications based on .NET APIs that are supported by the Mono platform. At the same time, we should mention the FSF's DotGnu [Dgn] project, as a GPL alternative to Mono.

	
 Databases: using a Microsoft SQL Server for example, makes us totally dependant on its Windows platform, plus, if we use proprietary solutions in a specific environment for database applications, they will be difficult to transfer. Other databases such as Oracle and DB2 (IBM) are more portable because they have a version in the different platforms or because they use more portable programming languages. We could also work with PostgreSQL or MySQL database systems (it also has a version for Windows) available in GNU/Linux, and that allow an easier transition. At the same time, if we combine it with a web development we have a lot of possibilities; in this sense, nowadays we use systems such as: web applications with Java, whether servlets, applets, or EJB; or solutions such as the famous LAMP, the combination of GNU/Linux, Apache, Mysql and Php.

 b) Workstation: in these migrations, the biggest problem stems from the applications, whether for CAD, animation, engineering or scientific programs, which are the workstation's main reason for being. Here it will be important to be able to replace them with equal or at least compatible applications with the same expected features or functionality. Normally, most of these applications stem from a UNIX world, given that most of these workstations were conceived as UNIX machines. Meaning that a compilation or minimum adaptation to the new GNU/Linux may be enough, if we have source code (as tends to be the case with many scientific applications). If we are dealing with commercial applications, the manufacturers (of engineering and scientific software) are starting to adapt them to GNU/Linux, although in these cases the applications are usually very expensive (easily hundreds to thousands of euros).

 c) Desktop client machines. Desktop machines continue to be a headache for the world of GNU/Linux, because they involve a number of additional problems. In servers, the machines are assigned clear functionalities, as a rule they do not require complex graphic interfaces (often text communication is sufficient), and the normally specific high performance hardware is purchased for a specific set of functions and the applications tend to be the servers themselves included in the operating system or some third party applications. Also, these machines are often managed by administrators with extensive knowledge of what they are dealing with. However, in the case of desktops, we are dealing with a problem factor (in itself and more so for administrators): the system's end users. The users of desktop systems expect to have powerful graphic interfaces that are more or less intuitive and applications that allow them to run routine – usually office – tasks. This type of user (with a few exceptions) has no reason to have advanced knowledge of computers; in general, they are familiar with office suites and use a couple of applications with varying degrees of skill. Here GNU/Linux has a clear problem, because UNIX as such was never conceived as a purely desktop system and was only later adapted with graphic interfaces such as X Window and the different desktops, such as the current GNU/Linux ones: Gnome and KDE. Furthermore, the end user tends to be familiar with Windows systems (which have almost a 95% share of the desktop market).

 In the case of desktops, GNU/Linux has a number of obstacles to overcome. One of the most critical ones is that it does not come preinstalled on machines, which obliges the user to have a certain amount of knowledge in order to be able to install it. Other reasons could be:

 Example 2.8. Note

 The desktop environment is a battle yet to be waged by GNU/Linux systems; which need to defeat users' reluctance to switch systems and generate awareness of their ability to offer simple alternatives and applications that can handle the tasks demanded by users.

 • User reluctance: a question a user may ask is: Why should I switch system? Will the new environment offer me the same thing? One of the basic reasons for changing will be quality software and its cost, since a large proportion will be free. On this point, we should consider the issue of illegal software. Users seem to consider that their software is free, when really they are in an illegal situation. GNU/Linux software offers good quality at a low cost (or at no cost in many cases), with several alternatives for the same job.

 • Simplicity: users are normally lost if the system does not have similar reference points to those the user is already familiar with, such as interface behaviour or tools with similar functionality. Users generally expect not to have to spend too much extra time on learning how to handle the new system. GNU/Linux still has a few problems with more or less automatic installations, which means that a certain amount of knowledge is still required in order to install it correctly. On this point, we should mention the ease of installing it in different environments provided by recent desktop oriented distributions like Ubuntu [Ubu]. Another common problem concerns support for the PC hardware; even though it is improving all the time, manufacturers still don't pay enough attention to it (partly for reasons of market share). Until there is a clear intention in this regard, we will not be able to have the same support as other proprietary systems (like Windows). However, we should emphasise the work of the Linux kernel community to offer the right support for new technologies, in some cases by supporting the manufacturer or by preparing primary support (if not supported by the manufacturer) or alternative support to that offered by the manufacturer.

 • Transparency: GNU/Linux environments have many complex mechanisms, such as daemons, services, difficult to configure ASCII files etc. For end users, it should be necessary to hide all of these complexities by means of graphics programs, configuration wizards etc. This is the path taken by some distributions such as Red Hat, Mandriva, Ubuntu or SuSe.

 • Support for known applications: a standard office suite user will face the problem of data portability or handling data formats. What to do with existing data? This problem is being solved daily, thanks to the office suites that are starting to have the functionalities a desktop user needs. For example, if we consider a migration from using a Windows Office suite, we can find suites such as OpenOffice (free software) that can read (and create) the formats of Office files (with some restrictions). Format compatibility is not difficult when it is open, but in the case of Windows, Microsoft continues to maintain a policy of closed formats; and a serious amount of work is needed in order to be able to use these formats, by means of reverse engineering (a fairly costly process). Also, in the Internet age, when information is supposed to move about freely, undocumented closed formats are more an obstacle than anything else. The best thing is to use open formats such as RTF (although these also have some problems because of the many versions of it that there are), or XML based formats (OpenOffice generates its own documents in XML), or PDF for read-only documents. We should also highlight recent efforts by the OpenOffice community to create the standard open document (used by the suite from versions 2.x), which have made it possible to have a free format as an ISO standard for document creation. This fact has obliged Microsoft to (partially) open its format in versions starting from Office 2007, to incorporate OpenXML formats.

 • To provide valid alternatives: the software we stop using has to have alternatives that do the same job as the previous system. Most applications have one or several alternatives with similar, if not better, functionalities. On the Internet you can find different lists of (more or less complete) applications for GNU/Linux that match the functionality of Windows applications.

 • Support for running applications for other systems: under some conditions it is possible to run applications for other UNIX systems (with the same architecture, for example, Intel x86), or for MS-DOS or Windows, through compatibility packages or some type of emulator.

 Example 2.9. Note

 For examples of GNU/Linux equivalent applications, see:

 http://www.linuxalt.com/

 http://wiki.linuxquestions.org/wiki/Linux_software_equivalent _to_Windows_software

 http://www.linuxrsp.ru/win-lin-soft/table-eng.htmlç

 Most of the problems that affect desktop migrations are being overcome slowly but surely and will allow us in future to have a larger number of GNU/Linux desktop users, who, as they increase, will have access to better applications encouraging software companies to start implementing versions for GNU/Linux.

 In the case of companies, it can be overcome with a gentle migration, starting with servers and workstations, and then desktops after following an extensive training program for users in the new systems and applications.

 A process that will help to a large extent is to introduce open code software in education and in public administrations, as in the case of Extremadura region in Spain with its GNU/Linux distribution called Linex; or recent measures for taking this software to primary education, or the measures taken by universities by running courses and subjects using these systems.

activities

 1) Determine the current version of the Linux kernel incorporated into our distribution. Check the available updates automatically, whether in Debian (apt) or in Fedora/Red Hat (via yum).

 2) Carry out an automatic update of our distribution. Check possible dependencies with other modules used (whether pcmcia or others) and with the bootloader (lilo or grub) used. A backup of important system data (account users and modified configuration files) is recommended if we do not have another sytem that is available for tests.

 3) For our branch of the kernel, to determine the latest available version (consult http://www.kernel.org) and carry out a manual installation following the steps described in the unit. The final installation can be left optional, or else make an entry in the bootloader for testing the new kernel.

 4) In the case of the Debian distribution, in addition to the manual steps, we saw how there is a special way (recommended) of installing the kernel from its sources using the kernel-package.

Chapter 10. Configuration, tuning and optimisation

 Remo Suppi Boldrito

 GNUFDL

2009-09-01

 preface

 A fundamental aspect, once the system has been installed, is the configuration and adjustment of the system to the user's needs to ensure that the features are as adequate as possible for the demands that will be placed on it. GNU/Linux is an efficient operating system that provides an excellent degree of possible configurations and a very delicate optimisation that can be tailored to the needs of the user. This is why, once the system has been installed (or updated, depending on the case), certain configurations that are essential to the system must be tuned. Although the system may "work", it is necessary to make some changes (adapting to the environment or tuning) so that all the needs of the users/services that the machine must provide are met. This tuning will depend on where the machine is working; the tuning will be carried out, in some cases, in order to improve the system's performance and efficiency, and, in other cases (in addition), for security reasons (see module 9, "Security administrator"). When the system is working, it is necessary to monitor the system to see how it performs and behaves and to act accordingly. Although it is a fundamental aspect, tuning an operating system is often left to the opinions of computer experts or gurus; but if we are aware of the parameters that affect the performance, it is possible to achieve good solutions by undertaking a cyclical process of analysis, making changes to the configuration, monitoring and making adjustments.

Free Software and Open Source

 Under the movements of Free Software and Open Source [OSIc] [OSIb] (also known as open code or open software), we find various different forms of software that share many common ideas.

 Important

 A software product that is considered to be open source implies as its main idea that it is possible to access its source code, and to modify it and redistribute it as deemed appropriate subject to a specific open source license that defines the legal context.

 As opposed to a proprietary type code, whereby the manufacturer (software company) will lock the code, hiding it and restricting the rights to it to itself, without allowing the possibility of any modification or change that has not been made previously by the manufacturer, open source offers:

 a) access to the source code, whether to study it (ideal for education purposes) or to modify it, to correct errors, to adapt it or to add more features;

 b) software that is free of charge: normally, the software, whether in binary form or source code form, can be obtained free of charge or for a modest sum to cover packaging and distribution costs and added value;

 c) standards that prevent monopolies of proprietary software, avoiding dependency on a single choice of software manufacturer; this is more important for a large organisation, whether a company or a state, which cannot (or should not) put itself in the hands of a single specific solution and depend exclusively upon it;

 d) a model of progress that is not based on hiding information but on sharing knowledge (like the scientific community) so as to progress more rapidly, and with better quality since decisions are based on the community's consensus and not on the whims of the companies that develop proprietary software.

 Creating programs and distributing them together with the source code is nothing new. Since the beginnings of IT and the Internet, things had been done this way. However, the concept of open source itself, its definition and the drafting of the conditions it has to meet date back to the middle of 1997.

 Eric Raymond and Bruce Perens promoted the idea. Raymond [Ray98] was the author of an essay called The Cathedral and the Bazaar, which discusses software development techniques used by the Linux community, headed by Linus Torvalds, and the GNU community of the Free Software Foundation (FSF), headed by Richard Stallman. Bruce Perens was the leader of the Debian project, which was working on creating a GNU/Linux distribution that integrated exclusively free software.

 Example 1.1. Note

 See The Catedral and the Bazaar text at:

 http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

 Example 1.2. Note

 Two of the most important communities are the FSF, with its GNU software project, and the Open Source community, with Linux as its major project. GNU/Linux is the outcome of their combined work.

 An important distinction between these communities lies in the definitions of open source and free software. [Deba] [PS02]

 The Free Software Foundation [FSF] is a non-profit corporation founded by Richard Stallman, who believes that we should guarantee that programs are within everyone's reach free of charge, freely accessible and for use as each individual sees fit. The term free caused some reticence among companies. In English, the word can mean "without cost or payment" or "not under the control or in the power of another". The FSF sought both, but it was difficult to sell these two ideas to businesses; the main question was: "How can we make money with this?" The answer came from the Linux community (headed by Linus Torvalds), when they managed to obtain something that the GNU and FSF community had not yet achieved: a free operating system with an available source code. It was at that moment that the community decided to unite the various activities within the free software movement under a new name: open source software.

 Open Source was registered as a certification brand, to which software products complying with its specifications could adhere. This did not please everybody and there tends to be a certain divide or controversy over the two groups of Open Source and FSF (with GNU), although really they have more things in common than not.

 To some extent, for the exponents of free software (such as the FSF), open source is a false step, because it means selling out its ideals to the market, leaving the door open for software that was free to become proprietary. Those who back open source see it as an opportunity to promote software that would otherwise only be used by a minority, whereas through its worldwide diffusion and sharing, including with companies wishing to participate in open source, we find sufficient strength to challenge proprietary software.

 Important

 However, the idea pursued by both movements is to increase the use of free software, thus offering an alternative to the sole solutions that large companies wish to impose. The differences are more than practical.

 Having established the basic ideas of the open source community, we reached the point where we needed to clarify the criteria a software product should meet in order to qualify as open source. We had to base it on the definition of open source [OSIb] that was originally written by Bruce Perens in June 1997 in response to comments by developers of the Debian Linux distribution, which was subsequently re-edited (with minor changes) by the Open Source Initiative organisation (OSI). This body is responsible for controlling the open source definition and licenses.

 Example 1.3. Note

 See the original definition of Open Source at:

 http://www.opensource.org/docs/definition.php

 In re-edition at:

 http://www.opensource.org

 Example 1.4. Note

 Open source is regulated by a public definition used as the basis for drafting its software licenses.

 A small summary (interpretation) of the definition: Open source software [OSIb], or software with an open source code, must fulfil the following requirements:

 1)	The software may be copied, given away or sold to third parties, without requiring any payment for it.

 2) The program must include source code and must allow distribution in source code as well as in compiled form. Or, in all events, there must be a well-publicised means of obtaining the source code (such as downloading via the Internet, for example). Deliberately obfuscated or intermediary forms of source code are not allowed. The license must guarantee that changes can be made.

 3) The software license must allow modifications and derived works, and must allow them to be distributed under the same terms as the license of the original software. It allows the original code to be re-used.

 4) The integrity of the author's source code may be required, in other words, modifications may be presented in the form of patches to the original code, or may be required to carry a different name or version number from the original. This protects which modifications can be attributed to the author. This point depends on what the software license says.

 5) The license must not discriminate against any person or group of persons. Access to the software must not be restricted. In some cases there may be legal restrictions, as in the case of the United States for technology exports to third countries. If there are restrictions of this type, they must be mentioned.

 6) No discrimination against fields of endeavour. The software can be used in any field of endeavour, even if it was not designed for that field. Commercial use is allowed; nobody can stop the software from being used for commercial purposes.

 7) The license applies to everyone who receives the program.

 8) If the software forms part of a larger product, it must keep the same license. This makes sure that parts are not separated in order to form proprietary software (in an uncontrolled manner). In the case of proprietary software, it must inform that it contains parts (stating which parts) of open source software.

 9) The license must not restrict any incorporated or jointly distributed software, in other words, its incorporation should not act as a barrier for another jointly distributed software product. This is a controversial issue since it appears to contradict the preceding point, basically it says that anyone can take open source software and add it to their own software without this affecting its license conditions (for example proprietary), although, according to the preceding point, it would have to inform that there are parts of open source.

 10) The license must be technology neutral, i.e. not restricted to certain devices or operating systems. It is not allowed to mention exclusive distribution means or to exclude possibilities. For example, under the open source licence, it is not possible to restrict the distribution to CD, FTP or web form.

 Important

 This definition of open source is not a software license in itself, but rather a specification of the requirements that an open source software license must fulfil.

 In order to be considered an open source program, the program's license must comply with the above specifications. The OSI is responsible for checking that licences meet the specifications. On the Open Source Licenses web page you can find the list of licenses [OSIa], of which one of the most famous and extensively used is the GPL (GNU Public License).

 Example 1.5. Note

 Open Source Licences:

 http://www.opensource.org/licenses/index.html

 Under the GPL, the software may be copied and modified, but modifications must be made public under the same license, and it prevents the code becoming mixed with proprietary code so as to avoid proprietary code taking over parts of open source. There is the LGPL license, which is practically identical except that software with this license can be integrated into proprietary software. A classic example is the Linux C library (with LGPL license); if it were GPL, only free software could be developed, with the LGPL it can be used for developing proprietary software.

 Many free software projects, or with part open source and part proprietary code, have their own license: Apache (based on BSD), Mozilla (MPL and NPL of Netscape) etc. Basically, when it comes to identifying the software as open source we can make our own license that complies with the above definition (of open source) or we can choose to license it under an already established license, or in the case of GPL, we are obliged for our license also to be GPL.

 Having studied the concepts of open source and its licenses, we need to look at to what extent it is profitable for a company to work on or produce open source. If it were not attractive for companies, we would lose both a potential client and one of the leading software producers at the same time.

 Open source is also attractive for companies, with a business model that emphasises a product's added value.

 Open source offers various attractive benefits where companies are concerned:

 a) For software developer companies, it poses a problem: how to make money without selling a product. A lot of money is spent on developing a program and then profit has to be made on top. Well, there is no simple answer, it is not possible with any type of software, the return lies in the type of software that can generate profit beyond the mere sale. Normally, a study will be made as to whether the application will become profitable if developed as open source (most will), based on the premises that we will have a reduced development cost (the community will help us), a reduced cost of maintenance or bug correction (the community can help with this quite quickly) and taking into account the number of users that the open source will provide, as well as the needs that they will have for our support or documentation services. If the balance is positive, then it will be viable to do without revenue from sales.

 b) Increasing the number of users.

 c) Obtaining greater development flexibility, the more people who intervene, the more people will be able to detect errors.

 d) Revenue will mostly come from support, user training and maintenance.

 e) Companies that use software need to take many parameters into consideration before choosing a software for managing tasks, such as performance, reliability, security, scalability and financial cost. And although it would seem that open source is already an evident choice on the cost basis, we must say that there is open source software capable of competing with (or even surpassing) proprietary software on any other parameter. Also, we need to take care with choosing the options or proprietary systems of a single manufacturer; we cannot rely solely on them (we may recall cases such as Sony's beta format video versus VHS, or the MicroChannel architecture of IBM for PCs). We need to avoid using monopolies with their associated risks: lack of price competition, expensive services, expensive maintenance, little (or no) choice of options etc.

 f) For private users it offers a large variety of software adapted for common uses, since a lot of the software has been conceived and implemented by people who wanted to do the same tasks but could not find the right software. Usually, in the case of a domestic user, a very important parameter is the software cost, but the paradox is that precisely domestic users are more prone to using proprietary software. Normally, domestic users will use illegal copies of software products; recent statistics show levels of 60-70% of illegal domestic copies. Users feel that merely by owning a home PC they are entitled to using the software in some countries for it. In these cases, we are dealing with illegal situations, which although they may not have been prosecuted, may be one day, or are attempted to be controlled through license systems (or product activations). Also, this has an indirect negative effects on free software, because if users are extensively using proprietary software, it forces everyone who wants to communicate them, whether banks, companies or public administrations, to use the same proprietary software too, and they do have to pay the product licenses. One of the most important battles for free software is to capture domestic users.

 Example 1.6. Note

 Illegal domestic copies are also sometimes known as pirated copies.

 g) Finally, states, as a particular case, can obtain important benefits from open source software, since it offers them quality software at ridiculous prices compared to the enormous cost of licenses for proprietary software. Moreover, open source software can easily integrate cultural aspects (of each country) such as language, for example. This last case is fairly problematic, since manufacturers of proprietary software refuse to adapt their applications in some regions – small states with their own language – or ask to be paid for doing so.

activities

 1) Perform a full system monitoring process using the tools that you think are most adequate and reach a diagnostic on the use of resources and the bottleneck that might exist in the system. Simulate the system's workload of the code of sumdis.c given in the unit that covers the clusters. For example, use:

 sumdis 1 2000000

 2) Change the parameters of the kernel and the compiler and execute the code mentioned in the preceding point (sumdis.c) with, for example:

 time ./sumdis 1 1000000

 3) The same with both kernels and formulate a conclusion regarding the results.

Standards

 Standards, whether generic of UNIX or particular to GNU/Linux, allow us to follow a few basic criteria that guide us in learning how to execute a task and that offer us basic information for starting our job.

 Important

 In GNU/Linux we can find standards, such as the FHS (filesystem hierarchy standard) [Linb], which tells us what we can find in the our system's file system structure (or where to look for it), or the LSB (Linux standard base), which discusses the different components that we tend to find in the systems [Linc].

 Example 3.2. Note

 See FHS in: www.pathname.com/fhs

 The FHS
 filesystem hierchachy standard describes the main file system tree structure (/), which specifies the structure of the directories and the main files that they will contain. This standard is also used to a greater or lesser extent for commercial UNIX, where originally there were many differences that made each manufacturer change the structure as they wished. The standard originally conceived for GNU/Linux was made to normalise this situation and avoid drastic changes. Even so, the standard is observed to varying degrees, most distributions follow a high percentage of the FHS, making minor changes or adding files or directories that did not exist in the standard.

 Example 3.3. Note

 The FHS standard is a basic tool that allows us to understand the structure and functionality of the system's main file system.

 A basic directories scheme could be:

	
 /bin: basic system utilities, normally programs used by users, whether from the system's basic commands (such as /bin/ls, list directory), shells (/bin/bash) etc.

	
 /boot: files needed for booting the system, such as the image of the Linux kernel, in /boot/vmlinuz.

	
 /dev: here we will find special files that represent the different possible devices in the system, access to peripherals in UNIX systems is made as if they were files. We can find files such as /dev/console, /dev/modem, /dev/mouse, /dev/cdrom, /dev/floppy... which tend to be links to more specific devices of the driver or interface type used by the devices: /dev/mouse, linked to /dev/psaux, representing a PS2 type mouse; or /dev/cdrom to /dev/hdc, a CD-ROM that is a device of the second IDE connector and master. Here we find IDE devices such as /dev/hdx, scsi /dev/sdx... with x varying according to the number of the device. Here we should mention that initially this directory was static, with the files predefined, and/or configured at specific moments, nowadays we use dynamic technology techniques (such as hotplug or udev), that can detect devices and create /dev files dynamically when the system boots or while running, with the insertion of removable devices.

	
 /etc: configuration files. Most administration tasks will need to examine or modify the files contained in this directory. For example: /etc/passwd contains part of the information on the system's user accounts.

	
 /home: it contains user accounts, meaning the personal directories of each user.

	
 /lib: the system's libraries, shared by user programs, whether static (.a extension) or dynamic (.so extension). For example, the standard C library, in libc.so files or libc.a. Also in particular, we can usually find the dynamic modules of the Linux kernel, in /lib/modules.

	
 /mnt: point for mounting (mount command) file systems temporarily; for example: /mnt/cdrom, for mounting a disk in the CD-ROM reader temporarily.

	
 /media: for common mounting point of removable devices.

	
 /opt: the software added to the system after the installation is normally placed here; another valid installation is in /usr/local.

	
 /sbin: basic system utilities. They tend to be command reserved for the administrator (root). For example: /sbin/fsck to verify the status of the file systems.

	
 /tmp: temporary files of the applications or of the system itself. Although they are for temporary running, between two executions the application/service cannot assume that it will find the previous files.

	
 /usr: different elements installed on the system. Some more complete system software is installed here, in addition to multimedia accessories (icons, images, sounds, for example in: /usr/share) and the system documentation (/usr/share/doc). It also tends to be used in /usr/local for installing software.

	
 /var: log or status type files and/or error files of the system itself and of various both local and network services. For example, log files in /var/log, e-mail content in /var/spool/mail, or printing jobs in /var/spool/lpd.

 These are some of the directories defined in the FHS for the root system, then for example it specifies some subdivisions, such as the content of /usr and /var, and the typical data and/or executable files expected to be found at minimum in the directories (see references to FHS documents).

 Regarding the distributions, Fedora/Red Hat follows the FHS standard very closely. It only presents a few changes in the files present in /usr, /var. In /etc there tends to be a directory per configurable component and in /opt, /usr/local there is usually no software installed unless the user installs it. Debian follows the standard, although it adds some special configuration directories in /etc.

 Another standard in progress is the LSB (Linux standard base) [Linc]. Its idea is to define compatibility levels between the applications, libraries and utilities, so that portability of applications is possible between distributions without too many problems. In addition to the standard, they offer test sets to check the compatibility level. LSB in itself is a collection of various standards applied to GNU/Linux.

 Example 3.4. Note

 See standard specifications:

 http://www.linuxfoundation.org/en/Specifications

Tutorial: combined practices of the different sections

 We will begin by examining the general state of our system. We will carry out different steps in a Debian system. It is an unstable Debian system (the unstable version, but more updated); however, the procedures are, mostly, transferable to other distributions such as Fedora/Red Hat (we will mention some of the most important changes). The hardware consists of a Pentium 4 at 2.66 Ghz with 768 MB RAM and various disks, DVD and CD-writer, as well as other peripherals, on which we will obtain information as we proceed step by step.

 First we will see how our system booted up the last time:

 # uptime
17:38:22 up 2:46, 5 users, load average: 0.05, 0.03, 0.04

 This command tells us the time that the system has been up since it last booted, 2 hours and 47 minutes and, in this case, we have 5 users. These will not necessarily correspond to five different users, but they will usually be opened user sessions (for example, through one terminal). The who command provides a list of these users. The load average is the system's average load over the last 1, 5 and 15 minutes.

 Let's look at system's boot log (dmesg command), and the lines that were generated when the system booted up (we have removed some lines for the purpose of clarity):

 Linux version 2.6.20-1-686 (Debian 2.6.20-2) (waldi@debian.org)
(gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Sun Apr
 15 21:03:57 UTC 2007
BIOS-provided physical RAM map:
	 BIOS-e820: 0000000000000000 - 000000000009f800 (usable)
	 BIOS-e820: 000000000009f800 - 00000000000a0000 (reserved)
	 BIOS-e820: 00000000000ce000 - 00000000000d0000 (reserved)
	 BIOS-e820: 00000000000dc000 - 0000000000100000 (reserved)
	 BIOS-e820: 0000000000100000 - 000000002f6e0000 (usable)
	 BIOS-e820: 000000002f6e0000 - 000000002f6f0000 (ACPI data)
	 BIOS-e820: 000000002f6f0000 - 000000002f700000 (ACPI NVS)
	 BIOS-e820: 000000002f700000 - 000000002f780000 (usable)
	 BIOS-e820: 000000002f780000 - 0000000030000000 (reserved)
	 BIOS-e820: 00000000ff800000 - 00000000ffc00000 (reserved)
	 BIOS-e820: 00000000fffffc00 - 0000000100000000 (reserved)
0MB HIGHMEM available.
759MB LOWMEM available.

 These first lines already indicate some interesting data: the Linux kernel is version 2.6.20-1-686, one version 2.6 revision 20 at revision 1 of Debian and for 686 machines (Intel x86 32 bits architecture). They also indicate that we are booting a Debian system, with this kernel which was compiled with a GNU gcc compiler, version 4.1.2 and the date. There is then a map of the memory zones used (reserved) by the BIOS and then the total memory detected in the machine: 759 MB, to which we would have to add the first 1 MB, making a total of 760 MB.

 Important

Kernel command line: BOOT_IMAGE=LinuxNEW ro root=302 lang=es acpi=force

	Initializing CPU#0

	Console: colour dummy device 80x25

	Memory: 766132k/777728k available (1641k kernel code, 10968k reserved, 619k data, 208k init, 0k highmem)

	Calibrating delay using timer specific routine.. 5320.63 BogoMIPS (lpj=10641275)

 Here, we are told how the machine booted up and which command line has been passed to the kernel (different options may be passed, such as lilo or grub). And we are booting in console mode with 80 x 25 characters (this can be changed). The BogoMIPS are internal measurements of the kernel of the CPU speed. There are architectures in which it is difficult to detect how many MHz the CPU works with and this is why this speed measurement is used. Subsequently, we are given more data on the main memory and what it is being used for at this booting stage.

 Important

	CPU: Trace cache: 12K uops, L1 D cache: 8K

	CPU: L2 cache: 512K

	CPU: Hyper-Threading is disabled

	Intel machine check architecture supported.

	Intel machine check reporting enabled on CPU#0.

	CPU0: Intel P4/Xeon Extended MCE MSRs (12) available

	CPU0: Intel(R) Pentium(R) 4 CPU 2.66GHz stepping 09

 Likewise, we are given various data on the CPU: the size of the first-level cache, the internal CPU cache, L1 divided in a TraceCache of the Pentium 4 (or cache instruction), and the data cache and the unified second-level cache (L2), the type of CPU, its speed and the system's bus.

 Important

PCI: PCI BIOS revision 2.10 entry at 0xfd994, last bus=3

Setting up standard PCI resources

...

NET: Registered protocol

IP route cache hash table entries: 32768 (order: 5, 131072 bytes)

TCP: Hash tables configured (established 131072 bind 65536)

checking if image is initramfs... it is

Freeing initrd memory: 1270k freed

fb0: VESA VGA frame buffer device

Serial: 8250/16550 driver $Revision: 1.90 $ 4 ports, IRQ sharing enabled

serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A

00:09: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A

RAMDISK driver initialized: 16 RAM disks of 8192K size 1024 blocksize

PNP: PS/2 Controller [PNP0303:KBC0,PNP0f13:MSE0] at 0x60,0x64 irq 1,12

i8042.c: Detected active multiplexing controller, rev 1.1.

serial: i8042 KBD port at 0x60,0x64 irq 1

serial: i8042 AUX0 port at 0x60,0x64 irq 12

serial: i8042 AUX1 port at 0x60,0x64 irq 12

serial: i8042 AUX2 port at 0x60,0x64 irq 12

serial: i8042 AUX3 port at 0x60,0x64 irq 12

mice: PS/2 mouse device common for all mice

 The kernel and devices continue to boot, mentioning the initiation of the network protocols. The terminals, the serial ports ttyS0 (which would be com1) and ttyS01 (com2). It provides information on the RAM disks that are being used, the detection of PS2 devices, keyboard and mouse.

 Important

ICH4: IDE controller at PCI slot 0000:00:1f.1

ide0: BM-DMA at 0x1860-0x1867, BIOS settings: hda:DMA, hdb:pio

ide1: BM-DMA at 0x1868-0x186f, BIOS settings: hdc:DMA, hdd:pio

Probing IDE interface ide0...

hda: FUJITSU MHT2030AT, ATA DISK drive

ide0 at 0x1f0-0x1f7,0x3f6 on irq 14

Probing IDE interface ide1...

hdc: SAMSUNG CDRW/DVD SN-324F, ATAPI CD/DVD-ROM drive

ide1 at 0x170-0x177,0x376 on irq 15

SCSI subsystem initialized

libata version 2.00 loaded.

hda: max request size: 128KiB

hda: 58605120 sectors (30005 MB) w/2048KiB Cache, CHS=58140/16/63<6>hda: hw_config=600b

, UDMA(100)

hda: cache flushes supported

 hda: hda1 hda2 hda3

kjournald starting. Commit interval 5 seconds

EXT3-fs: mounted file system with ordered data mode.

hdc: ATAPI 24X DVD-ROM CD-R/RW drive, 2048kB Cache, UDMA(33)

Uniform CD-ROM driver Revision: 3.20

Addinf 618492 swap on /dev/hda3.

 Detection of IDE devices, detecting the IDE chip in the PCI bus and reporting what is driving the devices: hda, and hdc, which are, respectively: a hard disk (Fujitsu), a second hard disk, a Samsung DVD Samsung, and a CD-writer (given that in this case, we have a combo unit). It indicates active partitions. Subsequently, the machine detects the main Linux file system, a journaled ext3, that activates and adds the swap space available in a partition.

 Important

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

input: PC Speaker as /class/input/input1

USB Universal Host Controller Interface driver v3.0

hub 1-0:1.0: USB hub found

hub 1-0:1.0: 2 ports detected

uhci_hcd 0000:00:1d.1: UHCI Host Controller

uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 2

uhci_hcd 0000:00:1d.1: irq 11, io base 0x00001820

usb usb2: configuration #1 chosen from 1 choice

hub 2-0:1.0: USB hub found

hub 2-0:1.0: 2 ports detected

hub 4-0:1.0: USB hub found

hub 4-0:1.0: 6 ports detected

 More detection of devices, USB (and the corresponding modules); in this case, two hub devices (with a total of 8 USB ports) have been detected.

 Important

parport: PnPBIOS parport detected.

parport0: PC-style at 0x378 (0x778), irq 7, dma 1 [PCSPP,TRISTATE,COMPAT,EPP,ECP,DMA]

input: ImPS/2 Logitech Wheel Mouse as /class/input/input2

ieee1394: Initialized config rom entry 'ip1394'

eepro100.c:v1.09j-t 9/29/99 Donald Becker

Synaptics Touchpad, model: 1, fw: 5.9, id: 0x2e6eb1, caps: 0x944713/0xc0000

input: SynPS/2 Synaptics TouchPad as /class/input/input3

agpgart: Detected an Intel 845G Chipset

agpgart: Detected 8060K stolen Memory

agpgart: AGP aperture is 128M

eth0: OEM i82557/i82558 10/100 Ethernet, 00:00:F0:84:D3:A9, IRQ 11.

 Board assembly 000000-000, Physical connectors present: RJ45

e100: Intel(R) PRO/100 Network Driver, 3.5.17-k2-NAPI

usbcore: registered new interface driver usbkbd

Initializing USB Mass Storage driver...

usbcore: registered new interface driver usb-storage

USB Mass Storage support registered.

lp0: using parport0 (interrupt-driven).

ppdev: user-space parallel port driver

 And the final detection of the rest of the devices: Parallel port, mouse model, FireWire port (IEEE1394) network card (Intel), a touchscreen, the AGP video card (i845). More data on the network card, an intel pro 100, registry of usb as mass storage (indicates a USB storage device as an external disk) and detection of parallel port.

 We can also see all this information, which we accessed through the dmesg command, dumped in the system's main log, /var/log/messages. In this log, we will find the kernel messages, among others, the messages of the daemons and network or device errors, which communicate their messages to a special daemon called syslogd, which is in charge of writing the messages in this file. If we have recently booted the machine, we will observe that the last lines contain exactly the same information as the dmesg command,

 for example, if we look at the final part of the file (which is usually very large):

 # tail 200 /var/log/messages

 We observe the same lines as before and some more information such as:

 Important

shutdown[13325]: shutting down for system reboot

kernel: usb 4-1: USB disconnect, address 3

kernel: nfsd: last server has exited

kernel: nfsd: unexporting all file systems

kernel: Kernel logging (proc) stopped.

kernel: Kernel log daemon terminating.

exiting on signal 15

syslogd 1.4.1#20: restart.

kernel: klogd 1.4.1#20, log source = /proc/kmsg started.

Linux version 2.6.20-1-686 (Debian 2.6.20-2) (waldi@debian.org) (gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Sun Apr 15 21:03:57 UTC 2007

kernel: BIOS-provided physical RAM map:

 The first part corresponds to the preceding shutdown of the system, informing us that the kernel has stopped placing information in /proc, that the system is shutting down... At the beginning of the new boot, the Syslogd daemon that generates the log is activated, and the system begins to load, which tells us that the kernel will begin to write information in its system, /proc; we look at the first lines of the dmesg mentioning the version of the kernel that is being loaded and we then find what we have seen with dmesg.

 At this point, another useful command for finding out how the load process has taken place is Ismod, which will tell us which modules have been loaded in the kernel (summarised version):

 # lsmod
Module Size Used by
nfs 219468 0
nfsd 202192 17
exportfs 5632 1 nfsd
lockd 58216 3 nfs,nfsd
nfs_acl 3616 2 nfs,nfsd
sunrpc 148380 13 nfs,nfsd,lockd,nfs_acl
ppdev 8740 0
lp 11044 0
button 7856 0
ac 5220 0
battery 9924 0
md_mod 71860 1
dm_snapshot 16580 0
dm_mirror 20340 0
dm_mod 52812 2 dm_snapshot,dm_mirror
i810fb 30268 0
vgastate 8512 1 i810fb
eeprom 7184 0
thermal 13928 0
processor 30536 1 thermal
fan 4772 0
udf 75876 0
ntfs 205364 0
usb_storage 75552 0
hid 22784 0
usbkbd 6752 0
eth1394 18468 0
e100 32648 0
eepro100 30096 0
ohci1394 32656 0
ieee1394 89208 2 eth1394,ohci1394
snd_intel8x0 31420 1
snd_ac97_codec 89412 1 snd_intel8x0
ac97_bus 2432 1 snd_ac97_codec
parport_pc 32772 1
snd 48196 6 snd_intel8x0,snd_ac97_codec,snd_pcm,snd_timer
ehci_hcd 29132 0
ide_cd 36672 0
cdrom 32960 1 ide_cd
soundcore 7616 1 snd
psmouse 35208 0
uhci_hcd 22160 0
parport 33672 3 ppdev,lp,parport_pc
intelfb 34596 0
serio_raw 6724 0
pcspkr 3264 0
pci_hotplug 29312 1 shpchp
usbcore 122312 6 dvb_usb,usb_storage,usbkbd,ehci_hcd,uhci_hcd
intel_agp 22748 1
agpgart 30504 5 i810fb,drm,intelfb,intel_agp
ext3 121032 1
jbd 55368 1 ext3
ide_disk 15744 3
ata_generic 7876 0
ata_piix 15044 0
libata 100052 2 ata_generic,ata_piix
scsi_mod 133100 2 usb_storage,libata
generic 4932 0 [permanent]
piix 9540 0 [permanent]
ide_core 114728 5 usb_storage,ide_cd,ide_disk,generic,piix

 We see that we basically have the drivers for the hardware that we have detected and other related elements or those necessary by dependencies.

 This gives us, then, an idea of how the kernel and its modules have been loaded. In this process, we may already have observed an error, if the hardware is not properly configured or there are kernel modules that are not properly compiled (they were not compiled for the appropriate kernel version), inexistent etc.

 The next step for examining the processes in the system, such as the ps (for process status) command, for example (only the system processes are shown, not the user ones):

 Important

ps -ef

UID PID PPID C STIME TTY TIME CMD

 Processes information, UID user that has launched the process (or the identifier with which it has been launched), PID and process code assigned by the system are consecutively shown, as the processes launch; the first is always 0, which corresponds to the init process. PPID is the id of the current parent process. STIME, time in which the process was booted, TTY, terminal assigned to the process (if there is one), CMD, command line with which it was launched.

 Important

root 1 0 0 14:52 ? 00:00:00 init [2]

root 3 1 0 14:52 ? 00:00:00 [ksoftirqd/0]

root 143 6 0 14:52 ? 00:00:00 [bdflush]

root 145 6 0 14:52 ? 00:00:00 [kswapd0]

root 357 6 0 14:52 ? 00:00:01 [kjournald]

root 477 1 0 14:52 ? 00:00:00 udevd --daemon

root 719 6 0 14:52 ? 00:00:00 [khubd]

 Various system daemons, such as the kswapd daemon, which controls the virtual memory swaps. Handling of system buffers (bdflush). Handling of file system journal (kjournald), USB handling (khubd). Or the udev daemon that controls the hot device connection. In general, the daemons are not always identified by a d at the end, and if they have a k at the beginning, they are normally internal threads of the kernel.

 Important

root 	1567 1 0 14:52 ? 00:00:00 dhclient -e -pf ...

root 	1653 1 0 14:52 ? 00:00:00 /sbin/portmap

root 	1829 1 0 14:52 ? 00:00:00 /sbin/syslogd

root 	1839 1 0 14:52 ? 00:00:00 /sbin/klogd -x

root 	1983 1 0 14:52 ? 00:00:09 /usr/sbin/cupsd

root 	2178 1 0 14:53 ? 00:00:00 /usr/sbin/inetd

 We have dhclient, which indicates that the machine is the client of a DHCP server, for obtaining its IP. Syslogd, a daemon that sends messages to the log. The cups daemon, which, as we have discussed, is related to the printing system. And inetd, which, as we shall see in the section on networks, is a type of "superserver" or intermediary of other daemons related to network services.

 Important

root 2154 1 0 14:53 ? 00:00:00 /usr/sbin/rpc.mountd

root 2241 1 0 14:53 ? 00:00:00 /usr/sbin/sshd

root 2257 1 0 14:53 ? 00:00:00 /usr/bin/xfs -daemon

root 2573 1 0 14:53 ? 00:00:00 /usr/sbin/atd

root 2580 1 0 14:53 ? 00:00:00 /usr/sbin/cron

root 2675 1 0 14:53 ? 00:00:00 /usr/sbin/apache

www-data 2684 2675 0 14:53 ? 00:00:00 /usr/sbin/apache

www-data 2685 2675 0 14:53 ? 00:00:00 /usr/sbin/apache

 There is also sshd, a safe remote access server (an improved version that permits services compatible with telnet and FTP). xfs is the fonts server (character types) of X Window. The atd and cron commands can be used for handling programmed tasks at a determined moment. Apache is a web server, which may have various active threads for attending to different requests.

 Important

root 2499 2493 0 14:53 ? 00:00:00 /usr/sbin/gdm

root 2502 2499 4 14:53 tty7 00:09:18 /usr/bin/X :0 -dpi 96 ...

root 2848 1 0 14:53 tty2 00:00:00 /sbin/getty 38400 tty2

root 2849 1 0 14:53 tty3 00:00:00 /sbin/getty 38400 tty3

root 3941 2847 0 14:57 tty1 00:00:00 -bash

root 16453 12970 0 18:10 pts/2 00:00:00 ps -ef

 gdm is the graphical login of the Gnome desktop system (the entry point where we are asked for the login name and password) and the getty processes are the ones that manage the virtual text terminals (which we can see by pressing Alt+Fx (or Ctrl+Alt+Fx if we are in graphic mode). X is the process of the X Window System graphic server and is essential for executing any desktop environment above this. An open shell (bash), and finally, the process that we have generated when requesting this ps from the command line.

 The ps command provides various command line options for adjusting the information that we want on each process, whether it is the time that it has been executing, the percentage of CPU used, memory used etc. (see man of ps). Another very interesting command is top, which does the same as ps but dynamically; in other words, it updates every certain period of time, we can classify the processes by use of CPU or memory and it also provides information on the state of the overall memory.

 Other useful commands for resources management are free and vmstat, which provide information on the memory used and the virtual memory system:

 Example 5.16. Note

 See man of the commands to interpret outputs.

	
 # free total used free shared buffers cached
	Mem: 767736 745232 22504 0 89564 457612
	-/+ buffers/cache: 198056 569680
	Swap: 618492 1732 616760

	
 # vmstat

	procs -----------memory---------- ---swap-- -----io-- --system-- ----cpu----
	r b swpd free buff cache si so bi bo in cs us sy id wa
	1 0 1732 22444 89584 457640 0 0 68 137 291 418 7 1 85 7

 The free command also shows the swap size, approximately 600 MB, which are not currently used intensely as there is sufficient physical memory space; there are still 22 MB free (which indicates a high use of the physical memory and the need to use swap soon). The memory space and swap (as of kernels 2.4) add to each other to comprise the total memory in the system, which in this case, means that there is a total of 1.4 GB available. This may seem a lot, but it will depend on the applications that are being executed.

Types of use

 GNU/Linux, as a system, offers characteristics that are valid for personal users as well as users of a medium or large-scale infrastructure.

 From the perspective of GNU/Linux system users, we could distinguish:

	
 The individual or domestic user: normally, this type of user has one or several machines at home that may or may not be shared. In general, in this environment, GNU/Linux is used to develop a desktop system, which means that the graphics part will be important: the GNU/Linux desktop.

 For this desktop we have two main options in the form of Gnome and KDE environments, both of which are perfectly valid. Either of the two environments offers applications running and visualisation services, together with a broad range of basic own applications that allow us to develop all sorts of routine tasks. The two environments offer a visual desktop with different menus, icon bars and icons, in addition to navigators for own files and various useful applications. Any environment can run its own applications and the others', although, in the same way as the applications, they run better in their own environment because their visual aspect is more suited to the environment for which they were designed.

 Regarding applications for the personal user, we should include the typical ones of the desktop system. If the user has a home network, for example, a small group of computers joined by an Ethernet type network, services for sharing files and printers between machines could also be interesting. Services such as NFS may be necessary if there are other Linux machines; or Samba, if there are machines with Windows.

 In the case of having an Internet connection through an ISP (Internet Service Provider) depending on the type of connection used, we would need to control the corresponding devices and protocols:

 	
 Modem connection: telephone modems tend to use the PPP protocol to connect with the provider. We would have to enable this protocol and configure the accounts we have enabled with the provider. An important problem with Linux is the winModems issue, which has caused a lot of trouble. This modem (with some exceptions) is not supported, because it is not a real modem but rather a hardware simplification plus driver software, and most only function with Windows, meaning that we need to avoid them (if not supported) and to buy real (full) modems.

	
 ADSL modem connection: the functioning would be similar, the PPP protocol could be used or another one called EoPPP. This may depend on the modem's manufacturer and on the type of modem: Ethernet or USB.

	
 ADSL connection with a router: the configuration is very simple, because in this situation all we need to do is to configure the Ethernet card and/or wireless card in our system to connect with the ADSL router.

 Once the interface to Internet is connected and configured, the last point is to include the type of services that we will need. If we only want to act as clients on Internet, it will be sufficient to use the client tools of the different protocols, whether FTP, telnet, the web navigator, e-mail or news reader etc. If we also wish to offer outgoing services – for example, to publish a website (web server) or to allow our external access to the machine (ssh, telnet, FTP, X Window, VNC, services etc.), in this case, server – then we must remember that this will only be possible if our provider gives us fixed IP addresses for our machine. Otherwise, our IP address will change every time we connect and the possibility of offering a service will become either very difficult or impossible.

 Another interesting service would be sharing access to the Internet between our available machines.

	
 Mid-scale user: this is the user of a middle scale organisation, whether a small company or group of users. Normally, this type of users will have local network connectivity (through a LAN, for example) with some connected machines and printers. And will have direct access to Internet, either through some proxy (point or machine designed for an external connection), or there will be a few machines physically connected to the Internet. In general, in this environment, work is partly local and partly shared (whether resources, printers or applications). Normally, we will need desktop systems; for example, in an office we can use office suite applications together with Internet clients; and perhaps also workstation type systems; for example, for engineering or scientific jobs, CAD or image processing applications may be used, as well as intensive mathematical calculation systems etc., and almost certainly more powerful machines will be assigned to these tasks.

 In this user environment, we will often have to share resources such as files, printers, possibly applications etc. Therefore, in a GNU/Linux system, NFS services will be appropriate, printer services, Samba (if there are Windows machines with which files or printers need to be shared), and we may also need database environments, an internal web server with shared applications etc.

	
 Large-scale users: this type of user resembles the preceding one and differs only in the size of the organisation and available resources, which can be plenty, in such a way that some resources of the NIS, NIS+ or LDAP type network system directory may be needed in order to handle the organisation's information and reflect its structure, certainly also to have large service infrastructures for external clients generally in the form of websites with various applications.

 This type of organisation has high levels of heterogeneity in both system hardware and software, and we could find lots of architectures and different operating systems, meaning that the main tasks will consist of easing data compatibility by means of databases and standard document formats and to ease interconnectivity by means of standard protocols, clients and servers (usually with TCP/IP elements).

Disk management

 In respect of the storage units, as we have seen, they have a series of associated devices, depending on the type of interface:

	
 IDE: devices

 /dev/had master disk, first IDE connector;

 /dev/hdb slave disk of the first connector,

 /dev/hdc master second connector,

 /dev/hdd slave second connector.

	
 SCSI: /dev/sda, /dev/sdb devices... following the numbering of the peripheral devices in the SCSI Bus.

	
 Diskettes: /dev/fdx devices, with x diskette number (starting in 0). There are different devices depending on the capacity of the diskette, for example, a 1.44 MB diskette in disk drive A would be /dev/fd0H1440.

 With regard to the partitions, the number that follows the device indicates the partition index within the disk and it is treated as an independent device: /dev/hda1 first partition of the first IDE disk, or /dev/sdc2, second partition of the third SCSI device. In the case of the IDE disks, these allow four partitions, known as primary partitions, and a higher number of logical partitions. Therefore, if /dev/hdan, n is less than or equal to 4, then it will be a primary partition; if not, it will be a logical partition with n being higher than or equal to 5.

 With the disks and the associated file systems, the basic processes that we can carry out are included in:

	
 Creation of partitions or modification of partitions. Through commands such as fdisk or similar (cfdisk, sfdisk).

	
 Formatting diskettes: different tools may be used for diskettes: fdformat (low-level formatting), superformat (formatting at different capacities in MSDOS format), mformat (specific formatting creating standard MSDOS file systems).

	
 Creation of Linux file systems, in partitions, using the mkfs command. There are specific versions for creating diverse file systems, mkfs.ext2, mkfs.ext3 and also non-Linux file systems: mkfs.ntfs, mkfs.vfat, mkfs.msdos, mkfs.minix, or others. For CD-ROMs, commands such as mkisofs for creating the ISO9660s (with joliet or rock ridge extensions), which may be an image that might subsequently be recorded on a CD/DVD, which along with commands such as cdrecord will finally allow us to create/save the CD/DVDs. Another particular case is the mkswap order, which allows us to create swap areas in the partitions, which will subsequently be activated or deactivated with swapon and swapoff.

	
 Setting up file systems: mount, umount. commands

	
 Status verification: the main tool for verifying Linux file systems is the fsck command. This command checks the different areas of the file system to verify the consistency and check for possible errors and to correct these errors where possible. The actual system automatically activates the command on booting when it detects situations where the system was not switched off properly (due to a cut in the electricity supply or an accidental shutting down of the machine) or when the system has been booted a certain number of times; this check usually takes a certain amount of time, usually a few minutes (depending on the size of the data). There are also particular versions for other file systems: fsck.ext2, fsck.ext3, fsck.vfat, fsck.msdos etc. The fsck process is normally performed with the device in read only mode with the partitions mounted; it is advisable to unmount the partitions for performing the process if errors are detected and it is necessary to correct the errors. In certain cases, for example, if the system that has to be checked is the root system (/) and a critical error is detected, we will be asked to change the system's runlevel execution mode to the root execution mode and to perform the verification process there. In general, if it is necessary to verify the system; this should be performed in superuser mode (we can switch between the runlevel mode with the init or telinit commands).

	
 Backup processes: whether in the disk, blocks of the disk, partitions, file systems, files... There are various useful tools for this: tar allows us to copy files towards file or tape units; cpio, likewise, can perform backups of files towards a file; both cpio and tar maintain information on the permissions and file owners; ddmakes it possible to make copies, whether they are files, devices, partitions or disks to files; it is slightly complex and we have to have some low-level information, on the type, size, block or sector, and it can also be sent to tapes.

	
 Various utilities: some individual commands, some of which are used by preceding processes to carry out various treatments: badblocks for finding defective blocks in the device; dumpe2fs for obtaining information on Linux file systems; tune2fs makes it possible to carry out Linux file system tuning of the ext2 or ext3 type and to adjust different performance parameters.

 We will now mention two subjects related to the concept of storage space, which are used in various environments for the basic creation of storage space. The use of RAID software and the creation of dynamic volumes.

 RAID software

 The configuration of disks using RAID levels is currently one of the most widely-used high-availability storage schemes, when we have various disks for implementing our file systems.

 The main focus on the different existing techniques is based on a fault-tolerance that is provided from the level of the device and the set of disks, to different potential errors, both physical or in the system, to avoid the loss of data or the lack of coherence in the system. As well as in some schemes that are designed to increase the performance of the disk system, increasing the bandwidth of these available for the system and applications.

 Today we can find RAID in hardware mainly in corporate servers (although it is beginning to appear in desktops), where there are different hardware solutions available that fulfil these requirements. In particular, for disk-intensive applications, such as audio and/or video streaming, or in large databases.

 In general, this hardware is in the form of cards (or integrated with the machine) of RAID-type disk drivers, which implement the management of one or more levels (of the RAID specification) over a set of disks administered with this driver.

 In RAID a series of levels (or possible configurations) are distinguished, which can be provided (each manufacturer of specific hardware or software may support one or more of these levels). Each RAID level is applied over a set of disks, sometimes called RAID array (or RAID disk matrix), which are usually disks with equal sizes (or equal to group sizes). For example, in the case of an array, four 100 GB disks could be used or, in another case, 2 groups (at 100 GB) of 2 disks, one 30 GB disk and one 70 GB disk. In some cases of hardware drivers, the disks (or groups) cannot have different sizes; in others, they can, but the array is defined by the size of the smallest disk (or group).

 We will describe some basic concepts on some levels in the following list (it should be remembered that, in some cases, the terminology has not been fully accepted, and it may depend on each manufacturer):

	
 RAID 0: The data are distributed equally between one or more disks without information on parity or redundancy, without offering fault-tolerance. Only data are being distributed; if the disk fails physically, the information will be lost and we will have to recover it from the backup copies. What does increase is the performance, depending on the RAID 0 implementation, given that the read and write options will be divided among the different disks.

 [image: RAID software]

	
 RAID 1: An exact (mirror) copy is created in a set of two or more disks (known as a RAID array). In this case, it is useful for the reading performance (which can increase lineally with the number of disks) and especially for having a tolerance to faults in one of the disks, given that (for example, with two disks) the same information is available. RAID 1 is usually adequate for high-availability, such as 24x7 environments, where we critically need the resources. This configuration also makes it possible (if the hardware supports this) to hot swap disks. If we detect a fault in any of the disks, we can replace the disk in question without switching off the system with another disk.

 [image: RAID software]

	
 RAID 2: In the preceding systems, the data would be divided in blocks for subsequent distribution; here, the data are divided into bits and redundant codes are used to correct the data. It is not widely used, despite the high performance levels that it could provide, as it ideally requires a high number of disks, one per data bit, and various for calculating the redundancy (for example, in a 32 bit system, up to 39 disks would be used).

	
 RAID 3: It uses byte divisions with a disk dedicated to the parity of blocks. This is not very widely used either, as depending on the size of the data and the positions, it does not provide simultaneous accesses. RAID 4 is similar, but it stripes the data at the block level, instead of byte level, which means that it is possible to service simultaneous requests when only a single block is requested.

	
 RAID 5: Block-level striping is used, distributing the parity among the disks. It is widely used, due to the simple parity scheme and due to the fact that this calculation is implemented simply by the hardware, with good performance levels.

 [image: RAID software]

	
 RAID 0+1 (or 01): A mirror stripe is a nested RAID level; for example, we implement two groups of RAID 0, which are used in RAID 1 to create a mirror between them. An advantage is that, in the event of an error, the RAID 0 level used may be rebuilt thanks to the other copy, but if more disks need to be added, they have to be added to all the RAID 0 groups equally.

	
 RAID 10 (1+0): striping of mirrors, groups of RAID 1 under RAID 0. In this way, in each RAID 1 group, a disk may fail without ensuing loss of data. Of course, this means that they have to be replaced, otherwise the disk that is left in the group becomes another possible error point within the system. This configuration is usually used for high-performance databases (due to the fault tolerance and the speed, as it is not based on parity calculations).

 [image: RAID software]

 Some points that should be taken into account with regard to RAID in general:

	
 RAID improves the system's uptime, as some of the levels make it possible for the system to carry on working consistently when disks fail and, depending on the hardware, it is even possible to hot swap the problematic hardware without having to stop the system, which is especially important in critical systems.

	
 RAID can improve the performance of the applications, especially in systems with mirror implementations, where data striping permits the lineal read operations to increase significantly, as the disks can provide simultaneous read capability, increasing the data transfer rate.

	
 RAID does not protect data; evidently, it does not protect data from other possible malfunctions (virus, general errors or natural disasters). We must rely on backup copy schemes.

	
 Data recovery is not simplified. If a disk belongs to a RAID array, its recovery should be attempted within that environment. Software that is specific to the hardware drivers is necessary to access the data.

	
 On the other hand, it does not usually improve the performance of typical user applications, even if they are desktop applications, because these applications have components that access RAM and small sets of data, which means they will not benefit from lineal reading or sustained data transfers. In these environments, it is possible that the improvement in performance and efficiency is hardly even noticed.

	
 Information transfer is not improved or facilitated in any way; without RAID, it is quite easy to transfer data, by simply moving the disk from one system to another. In RAID's case, it is almost impossible (unless we have the same hardware) to move one array of disks to another system.

 In GNU/Linux, RAID hardware is supported through various kernel modules, associated to different sets of manufacturers or chipsets of these RAID drivers. This permits the system to abstract itself from the hardware mechanisms and to make them transparent to the system and the end user. In any case, these kernel modules allow us to access the details of these drivers and to configure their parameters at a very low level, which in some cases (especially in servers that support a high I/O load) may be beneficial for tuning the disks system that the server uses in order to maximise the system's performance.

 The other option that we will analyse is that of carrying out these processes through software components, specifically GNU/Linux's RAID software component.

 GNU/Linux has a kernel of the so-called Multiple Device (md) kind, which we can consider as a support through the driver of the kernel for RAID. Through this driver we can generally implement RAID levels 0,1,4,5 and nested RAID levels (such as RAID 10) on different block devices such as IDE or SCSI disks. There is also the linear level, where there is a lineal combination of the available disks (it doesn't matter if they have different sizes), which means that disks are written on consecutively.

 In order to use RAID software in Linux, we must have RAID support in the kernel, and, if applicable, the md modules activated (as well as some specific drivers, depending on the case (see available drivers associated to RAID, such as in Debian with modconf). The preferred method for implementing arrays of RAID disks through the RAID software offered by Linux is either during the installation or through the mdadm utility. This utility allows us to create and manage the arrays.

 Let's look at some examples (we will assume we are working with some SCSI /dev/sda, /dev/sdb disks... in which we have various partitions available for implementing RAID):

 Creation of a linear array:

 # mdadm –create –verbose /dev/md0 –level=linear –raid-devices=2 /dev/sda1 /dev/sdb1

 where we create a linear array based on the first partitions of /dev/sda and /dev/sdb, creating the new device /dev/md0, which can already be used as a new disk (supposing that the mount point /media/diskRAID exists):

 # mkfs.ext2fs /dev/md0
mount /dev/md0 /media/diskRAID

 For a RAID 0 or RAID 1, we can simply change the level (-level) to raid0 or raid1. With mdadm –detail /dev/md0, we can check the parameters of the newly created array.

 We can also consult the mdstat entry in /proc to determine the active arrays and their parameters. Especially in the cases with mirrors (for example, in levels 1, 5...) we can examine the initial backup reconstruction in the created file; in /proc/mdstat we will see the reconstruction level (and the approximate completion time).

 The mdadm utility provides many options that allow us to examine and manage the different RAID software arrays created (we can see a description and examples in man mdadm).

 Another important consideration are the optimisations that should be made to the RAID arrays so as to improve the performance, through both the monitoring of its behaviour to optimise the file system parameters, as well as to use the RAID levels and their characteristics more effectively.

 Example 5.15. Note

 The optimisation of the RAID arrays, may be an important resource for system tuning and some questions should be examined in:

 Software-RAID-Howto, or in the actual mdadm man.

 Logical Volume Manager (LVM)

 There is a need to abstract from the physical disk system and its configuration and number of devices, so that the (operating) system can take care of this work and we do not have to worry about these parameters directly. In this sense, the logical volume management system can be seen as a layer of storage virtualisation that provides a simpler view, making it simpler and smoother to use.

 In the Linux kernel, there is an LVM (logical volume manager), which is based on ideas developed from the storage volume managers used in HP-UX (HP's proprietary implementation of UNIX). There are currently two versions and LVM2 is the most widely used due to a series of added features.

 The architecture of an LVM typically consists of the (main) components:

	

 Physical volumes (PV): PVs are hard disks or partitions or any other element that appears as a hard disk in the system (for example, RAID software or hardware).

	

 Logical volumes (LV): These are equivalent to a partition on the physical disk. The LV is visible in the system as a raw block device (completely equivalent to a physical partition) and it may contain a file system (such as the users' /home). Normally, the volumes make more sense for the administrators, as names can be used to identify them (for example, we can use a logical device, named stock or marketing instead of hda6 or sdc3).

	

 Volume groups (VG): This is the element on the upper layer. The administrative unit that includes our resources, whether they are logical volumes (LV) or physical volumes (PV). The data on the available PVs and how the LVs are formed using the PVs are saved in this unit. Evidently, in order to use a Volume Group, we have to have physical PV supports, which are organised in different logical LV units.

 For example, in the following figure, we can see volume groups where we have 7 PVs (in the form of disk partitions, which are grouped to form two logical volumes (which have been completed using /usr and /home to form the file systems):

 [image: Logical Volume Manager (LVM)]

 By using logical volumes, we can treat the storage space available (which may have a large number of different disks and partitions) more flexibly, according to the needs that arise, and we can manage the space by the more appropriate identifiers and by operations that permit us to adapt the space to the needs that arise at any given moment.

 Logical Volume Management allows us to:

	
 Resize logical groups and volumes, using new PVs or extracting some of those initially available.

	
 Snapshots of the file system (reading in LVM1, and reading and/or writing in LVM2). This makes it possible to create a new device that is a snapshot of the situation of an LV. Likewise, we can create the snapshot, mount it, try various operations or configure new software or other elements and, if these do not work as we were expecting, we can return the original volume to the state it was in before performing the tests.

	
 RAID 0 of logical volumes.

 RAID levels 1 or 5 are not implemented in LVM; if they are necessary (in other words, redundancy and fault tolerance are required), then either we use RAID software or RAID hardware drivers that will implement it and we place LVM as the upper layer.

 We will provide a brief, typical example (in many cases, the distributor installer carries out a similar process if we set an LVM as the initial storage system). Basically, we must: 1) create physical volumes (PV). 2) create the logical group (VG) and 3) create the logical volume and finally use the following to create and mount a file system:

 1) 	example: we have three partitions on different disks, we have created three PVs and started-up the contents:

 # dd if=/dev/zero of=/dev/hda1 bs=1k count=1
dd if=/dev/zero of=/dev/hda2 bs=1k count=1
dd if=/dev/zero of=/dev/hdb1 bs=1k count=1
pvcreate /dev/hda1
Physical volume "/dev/sda1" successfully created
pvcreate /dev/hda2
Physical volume "/dev/hda2" successfully created
pvcreate /dev/hdb1
Physical volume "/dev/hdb1" successfully created

 2) placement of a VG created from the different PVs:

 # vgcreate group_disks /dev/hda1 /dev/hda2 /dev/hdb1
Volume group "group_disks" successfully created

 3) we create the LV (in this case, with a size of 1 GB) based on the elements that we have in group VG group (-n indicates the name of the volume):

 # lvcreate -L1G -n logical_volume group_disks
lvcreate -- doing automatic backup of "group_disks"
lvcreate -- logical volume "/dev/group_disks/ logical_volume" successfully created

 And finally, we create a file system (a ReiserFS in this case):

 # mkfs.reiserfs /dev/group_disks/logical_volume

 Which we could, for example, place as backup space

 # mkdir /mnt/backup
mount -t reiserfs /dev/group_disks/logical_volume /mnt/backup

 Finally, we will have a device as a logical volume that implements a file system in our machine.

